Skip to main content Skip to main navigation menu Skip to site footer

Red Blood Cell Distribution Width (RDW) as a predictor of septic shock in children


Link of Video Abstract:


Background: Septic shock is a prevalent PICU condition requiring prompt intervention. Using the PELOD II score, which has multiple characteristics to examine, it is challenging to predict prognosis in healthcare-limited settings. A link has recently been shown between red blood cell distribution width (RDW) and mortality risk in critically ill patients, albeit the exact mechanism is unknown.

Methods: This retrospective observational study examined RDW values in pediatric septic or non-septic shock patients. This study examined patient clinical features, RDW hematological markers (RDW-CV, RDW-SD, and RDW/albumin ratio), and the area under the curve to determine the cut-off for the hematological marker, sensitivity, and specificity.

Results: Sixty-one pediatric patients met the inclusion criteria (33 with septic shock and 28 with non-septic shock). The red cell distribution width coefficient variation (RDW-CV) (p=0,058), red cell distribution width standard deviation (RDW-SD) (p=0,05), and RDW Albumin Ratio (RAR) (p=0,014) were shown to be significantly different between the septic shock and non-septic shock groups. The cut-off value for RDW-CV was 15.3% (53.6% sensitivity and 97% specificity), 47.4 fl for RDW-SD (64.3% sensitivity and 84.8% specificity), and 5.65 for RDW/albumin ratio (71.4% sensitivity and 84.8% specificity).  RDW-CV odd ratio was 36.9 (95% confidence interval (CI) 4.41-308.96, p 0.001), RDW-SD odd ratio was 10.08 (95% confidence interval (CI) 2.95-34.34, p 0,001), and RDW/albumin ratio was 14.00 (95% confidence interval (CI) 3.98-49.16, p 0,001).

Conclusion: Increased RDW can be one marker in pediatric patients with septic shock. Increased levels of RDW/albumin ratio are significantly associated with the incidence of septic shock. Through the (ROC) area under the curve, the RDW/albumin ratio has better capabilities compared to other predictor markers. 


  1. Saraswati DD, Pudjiadi AH, Djer MM, Supriyatno B, Syarif DR, Kurniati N. Faktor Risiko yang Berperan pada Mortalitas Sepsis. Sari Pediatri. 2016 Nov 9;15(5):281.
  2. de Oliveira CF, de Oliveira DSF, Gottschald AFC, Moura JDG, Costa GA, Ventura AC, et al. ACCM/PALS haemodynamic support guidelines for paediatric septic shock: an outcomes comparison with and without monitoring central venous oxygen saturation. Intensive Care Med. 2008 Jun 28;34(6):1065–75.
  3. Weiss SL, Fitzgerald JC, Maffei FA, Kane JM, Rodriguez-Nunez A, Hsing DD, et al. Discordant identification of pediatric severe sepsis by research and clinical definitions in the SPROUT international point prevalence study. Crit Care. 2015 Dec 1;19(1):325.
  4. Tan B, Wong JJM, Sultana R, Koh CJW, Jit M, Mok YH, et al. Global Case-Fatality Rates in Pediatric Severe Sepsis and Septic Shock: A Systematic Review and Meta-analysi. JAMA Pediatr. 2019 Apr 1;173(4):401.
  5. Pontrelli G, De Crescenzo F, Buzzetti R, Jenkner A, Balduzzi S, Calò Carducci F, et al. Accuracy of serum procalcitonin for the diagnosis of sepsis in neonates and children with systemic inflammatory syndrome: a meta-analysis. BMC Infect Dis. 2017 Dec 24;17(1):302.
  6. Playfor S. Management of the critically ill child with sepsis. Continuing Education in Anaesthesia Critical Care & Pain. 2004 Feb;4(1):12–5.
  7. Jo YH, Kim K, Lee JH, Kang C, Kim T, Park HM, et al. Red cell distribution width is a prognostic factor in severe sepsis and septic shock. Am J Emerg Med. 2013 Mar;31(3):545–8.
  8. Lawrence JW, Mason ST, Schomer K, Klein MB. Epidemiology and Impact of Scarring After Burn Injury. Journal of Burn Care & Research. 2011;33(1):136–46.
  9. Watson RS, Carcillo JA, Linde-Zwirble WT, Clermont G, Lidicker J, Angus DC. The Epidemiology of Severe Sepsis in Children in the United States. Am J Respir Crit Care Med. 2003 Mar 1;167(5):695–701.
  10. Markovitz BP, Goodman DM, Watson RS, Bertoch D, Zimmerman J. A retrospective cohort study of prognostic factors associated with outcome in pediatric severe sepsis: What is the role of steroids?*. Pediatric Critical Care Medicine. 2005 May;6(3):270–4.
  11. Schaible UE, Kaufmann SHE. Malnutrition and Infection: Complex Mechanisms and Global Impacts. PLoS Med. 2007 May 1;4(5):e115.
  12. Metta D, Soebardja D, S DH. The use of pediatric logistic organ dysfunction (PELOD) scoring system to determine the prognosis of patients in pediatric intensive care units. Paediatr Indones. 2016 Oct 18;46(1):1.
  13. Herwanto V, Amin Z. Sindrom Disfungsi Organ Multipel: Patofisiologi dan Diagnosis. Journal of The Indonesian Medical Assosciation. 2009 Nov;59(11):547–54.
  14. Higgins JM, Foy BH, Carlson JCT, Reinertsen E, Padros I. Valls R, Pallares Lopez R, et al. Association of Red Blood Cell Distribution Width with Mortality Risk in Hospitalized Adults with SARS-CoV-2 Infection. JAMA Netw Open. 2020 Sep 23;3(9).
  15. Moreno-Torres V, Sánchez-Chica E, Castejón R, Caballero Bermejo AF, Mills P, Diago-Sempere E, et al. Red blood cell distribution width as a marker of hyperinflammation and mortality in COVID-19. Ann Palliat Med. 2022 Aug 1;11(8):2609–21.
  16. Sarkar S, Kannan S, Khanna P, Singh AK. Role of red blood cell distribution width, as a prognostic indicator in COVID-19: A systematic review and meta-analysis. Vol. 32, Reviews in Medical Virology. John Wiley and Sons Ltd; 2022.
  17. Wang C, Zhang H, Cao X, Deng R, Ye Y, Fu Z, et al. Red cell distribution width (RDW): a prognostic indicator of severe COVID-19. Ann Transl Med. 2020 Oct;8(19):1230–1230.
  18. He Y, Liu C, Zeng Z, Ye W, Lin J, Ou Q. Red blood cell distribution width: A potential laboratory parameter for monitoring inflammation in rheumatoid arthritis. Clin Rheumatol. 2018 Jan 1;37(1):161–7.
  19. Owoicho O, Tapela K, Olwal CO, Djomkam Zune AL, Nganyewo NN, Quaye O. Red blood cell distribution width as a prognostic biomarker for viral infections: Prospects and challenges. Vol. 16, Biomarkers in Medicine. Future Medicine Ltd.; 2022. p. 41–50.
  20. Fava C, Cattazzo F, Hu ZD, Lippi G, Montagnana M. The role of red blood cell distribution width (RDW) in cardiovascular risk assessment: useful or hype? Ann Transl Med. 2019 Oct;7(20):581–581.
  21. Guaní-Guerra E, Torres-Murillo B, Muñoz-Corona C, Rodríguez-Jiménez JC, Macías AE, Scavo-Montes DA, et al. Diagnostic Accuracy of the RDW for Predicting Death in COVID-19. Medicina (Lithuania). 2022 May 1;58(5).
  22. Ramachandran P, Gajendran M, Perisetti A, Elkholy KO, Chakraborti A, Lippi G, et al. Red Blood Cell Distribution Width in Hospitalized COVID-19 Patients. Front Med (Lausanne). 2022 Jan 7;8.
  23. Lippi G, Targher G, Montagnana M, Salvagno GL, Zoppini G, Guidi GC. Relation Between Red Blood Cell Distribution Width and Inflammatory Biomarkers in a Large Cohort of Unselected Outpatients. Vol. 133, Arch Pathol Lab Med. 2009.
  24. Bazick HS, Chang D, Mahadevappa K, Gibbons FK, Christopher KB. Red cell distribution width and all-cause mortality in critically ill patients. Crit Care Med. 2011;39(8):1913–21.
  25. Martinelli N, Montagnana M, Pizzolo F, Friso S, Salvagno GL, Forni GL, et al. A relative ADAMTS13 deficiency supports the presence of a secondary microangiopathy in COVID 19. Vol. 193, Thrombosis Research. Elsevier Ltd; 2020. p. 170–2.
  26. Bergamaschi G, Borrelli de Andreis F, Aronico N, Lenti MV, Barteselli C, Merli S, et al. Anemia in patients with Covid-19: pathogenesis and clinical significance. Clin Exp Med. 2021 May 1;21(2):239–46.
  27. Lanini S, Montaldo C, Nicastri E, Vairo F, Agrati C, Petrosillo N, et al. COVID-19 disease - Temporal analyses of complete blood count parameters over course of illness, and relationship to patient demographics and management outcomes in survivors and non-survivors: A longitudinal descriptive cohort study. PLoS One. 2020 Dec 1;15(12 December).
  28. Lorente L, Martín MM, Argueso M, Solé-Violán J, Perez A, Marcos Y Ramos JA, et al. Association between red blood cell distribution width and mortality of COVID-19 patients. Anaesth Crit Care Pain Med. 2021 Feb 1;40(1).
  29. Hornick A, Tashtish N, Osnard M, Shah B, Bradigan A, Albar Z, et al. Anisocytosis is associated with short-term mortality in covid-19 and may reflect proinflammatory signature in uninfected ambulatory adults. Pathog Immun. 2020;5(1):312–26.
  30. Salvagno GL, Sanchis-Gomar F, Picanza A, Lippi G. Red blood cell distribution width: A simple parameter with multiple clinical applications. Crit Rev Clin Lab Sci. 2015 Mar 4;52(2):86–105.
  31. Karampitsakos T, Akinosoglou K, Papaioannou O, Panou V, Koromilias A, Bakakos P, et al. Increased Red Cell Distribution Width Is Associated With Disease Severity in Hospitalized Adults With SARS-CoV-2 Infection: An Observational Multicentric Study. Front Med (Lausanne). 2020 Dec 11;7.
  32. Ertekin B, Acar T. The Relationship Between Prognosis and Red Cell Distribution Width (RDW) and RDW-Albumin Ratio (RAR) in Patients with Severe COVID-19 Disease. Int J Gen Med. 2022 Dec;Volume 15:8637–45.
  33. Ni Q, Wang X, Wang J, Chen P. The red blood cell distribution width-albumin ratio: A promising predictor of mortality in heart failure patients — A cohort study. Clinica Chimica Acta. 2022 Feb;527:38–46.
  34. Long J, Xie X, Xu D, Huang C, Liu Y, Meng X, et al. Association Between Red Blood Cell Distribution Width-to-Albumin Ratio and Prognosis of Patients with Aortic Aneurysms. Int J Gen Med. 2021 Oct;Volume 14:6287–94.
  35. Zhao N, Hu W, Wu Z, Wu X, Li W, Wang Y, et al. The Red Blood Cell Distribution Width–Albumin Ratio: A Promising Predictor of Mortality in Stroke Patients. Int J Gen Med. 2021 Jul;Volume 14:3737–47.
  36. Yoo JW, Ju S, Lee SJ, Cho YJ, Lee JD, Kim HC. Red cell distribution width/albumin ratio is associated with 60-day mortality in patients with acute respiratory distress syndrome. Infect Dis. 2020 Apr 2;52(4):266–70.
  37. Lu C, Long J, Liu H, Xie X, Xu D, Fang X, et al. Red blood cell distribution width‐to‐albumin ratio is associated with all‐cause mortality in cancer patients. J Clin Lab Anal. 2022 May 8;36(5).
  38. Zhou D, Wang J, Li X. The Red Blood Cell Distribution Width–Albumin Ratio Was a Potential Prognostic Biomarker for Diabetic Ketoacidosis. Int J Gen Med. 2021 Sep;Volume 14:5375–80.
  39. Cabrerizo S, Cuadras D, Gomez-Busto F, Artaza-Artabe I, Marín-Ciancas F, Malafarina V. Serum albumin and health in older people: Review and meta analysis. Maturitas. 2015 May;81(1):17–27.
  40. Alejandra Aguayo-Becerra O, Torres-Garibay C, Dassaejv Macías-Amezcua M, Fuentes-Orozco C, de Guadalupe Chávez-Tostado M, Andalón-Dueñas E, et al. Serum albumin level as a risk factor for mortality in burn patients. Clinics. 2013 Jul;68(7):940–5.
  41. Gatta A, Verardo A, Bolognesi M. Hypoalbuminemia. Intern Emerg Med. 2012 Oct 17;7(S3):193–9.
  42. Braamskamp MJAM, Dolman KM, Tabbers MM. Clinical practice. Eur J Pediatr. 2010 Oct 23;169(10):1179–85.
  43. Levitt D, Levitt M. Human serum albumin homeostasis: a new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements. Int J Gen Med. 2016 Jul;Volume 9:229–55.
  44. Pan Y, Ye G, Zeng X, Liu G, Zeng X, Jiang X, et al. Can routine laboratory tests discriminate SARS‐CoV‐2‐infected pneumonia from other causes of community‐acquired pneumonia? Clin Transl Med. 2020 Mar;10(1):161–8.
  45. Sinaga MM, Budipramana VS, Nugraha J. The correlation of blood thiamine concentrations with lactate acidosis in peritonitis patients with sepsis. Bali Med J. [Internet]. 2021 Apr. 28 [cited 2023 Sep. 19];10(1):214-8. Available from:
  46. Yusuf F, Abubakar A, Maghfirah D, Baswin A. Relationship red distribution width to platelet ratio with fibrosis degrees based on transient elastography in chronic hepatitis B patients. Bali Med J. [Internet]. 2021 Aug. 31 [cited 2023 Sep. 19];10(2):793-7. Available from:
  47. Sani F, Hafie A, Ihsan M. Comparison between ringerfundin (B Braun) and ringer lactate administration towards Interleukin-6 (IL-6) levels in sepsis and septic shock patients at Haji Adam Malik Hospital, Medan-Indonesia. Bali Med J. [Internet]. 2018 Apr. 2 [cited 2023 Sep. 19];7(1):82-6. Available from:

How to Cite

Nastiti, P. H. ., Khalida, N. R., Setyaningtyas, A. ., & Kusumastuti, N. P. . (2023). Red Blood Cell Distribution Width (RDW) as a predictor of septic shock in children. Bali Medical Journal, 12(3), 2986–2991.




Search Panel

Prima Hari Nastiti
Google Scholar
BMJ Journal

Nadiah Raini Khalida
Google Scholar
BMJ Journal

Arina Setyaningtyas
Google Scholar
BMJ Journal

Neurinda Permata Kusumastuti
Google Scholar
BMJ Journal