Skip to main content Skip to main navigation menu Skip to site footer

Research trends on the use of ultrasound as neuromodulation-based therapy, based on bibliometric analysis


Link of Video Abstract:


Introduction: Ultrasound has seen a significant increase in use in neuromodulation-based therapy over the past decade due to technological advancements, enabling precise tissue ablation, clinical neuromodulatory brain stimulation, and targeted blood-brain barrier permeabilization. The bibliometric analysis reveals a growing body of literature focused on the utilization of low-intensity ultrasound (LI-US) and high-intensity focused ultrasound (HIFUS) in the field of neuromodulation. Ultrasonography has potential applications in treating neurological and psychiatric illnesses like neuropathic pain, epilepsy, and treatment-resistant mental illness, but further investigation is needed to understand mechanisms and safety considerations. The use of bibliometric analysis can effectively identify common research patterns and highlight advancements in this specific academic field. Research indicates that ultrasound-based neuromodulation approaches may offer novel therapeutic interventions with enhanced efficacy and safety in treating various neurological and mental illnesses.

Methods: The process of data collection involved conducting a search on the Scopus website using specific keywords. Subsequently, the collected data is stored in the file formats of .bib and .csv. These files are then subjected to analysis using the biblioshiny and Vosviewer software tools. The research not only use quantitative analysis but also incorporates qualitative investigations.

Results: The trend of the most significant affiliations, authors, documents with the highest number of citations, relevant sources, cited nations, and annual scientific production was determined. This academic study employs many visualization techniques, including overlay visualization of the Scopus database, utilization of VOSviewer for database analysis, network visualization, density visualization, and thematic mapping.

Conclusions: The use of ultrasound as a neuromodulation therapy offers numerous opportunities and potential across various sub-topics, despite a limited literature corpus compared to other academic disciplines. The use of this discipline in human subjects is limited, requiring extensive clinical studies and cross-national collaboration for the advancement of therapeutic interventions.


  1. Darrow DP. Focused Ultrasound for Neuromodulation. Neurotherapeutics. 2019;16(1):88-99.
  2. Chang H, Wang Q, Liu T, Chen L, Hong J, Liu K, et al. A Bibliometric Analysis for Low-Intensity Ultrasound Study Over the Past Three Decades. Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine. 2023.
  3. Zhang T, Pan N, Wang Y, Liu C, Hu S. Transcranial Focused Ultrasound Neuromodulation: A Review of the Excitatory and Inhibitory Effects on Brain Activity in Human and Animals. Front Hum Neurosci. 2021;15:749162.
  4. Blackmore J, Shrivastava S, Sallet J, Butler CR, Cleveland RO. Ultrasound Neuromodulation: A Review of Results, Mechanisms and Safety. Ultrasound Med Biol. 2019;45(7):1509-36.
  5. Fomenko A, Lozano AM. Neuromodulation and ablation with focused ultrasound - toward the future of noninvasive brain therapy. Neural Regen Res. 2019;14(9):1509-10.
  6. Olinger C, Vest J, Tarasek M, Yeo D, DiMarzio M, Burdette C, et al. MR thermometry imaging for low intensity focused ultrasound modulation of spinal nervous tissue. Magn Reson Imaging. 2023;101:35-9.
  7. Ilfeld BM, Finneran JJt, Said ET, Cidambi KR, Ball ST. Percutaneous auricular nerve stimulation (neuromodulation) for the treatment of pain: A proof-of-concept case report using total joint arthroplasty as a surrogate for battlefield trauma. J Trauma Acute Care Surg. 2022;93(2S Suppl 1):S165-s8.
  8. Nüssel M, Zhao Y, Knorr C, Regensburger M, Stadlbauer A, Buchfelder M, et al. Deep Brain Stimulation, Stereotactic Radiosurgery and High-Intensity Focused Ultrasound Targeting the Limbic Pain Matrix: A Comprehensive Review. Pain Ther. 2022;11(2):459-76.
  9. Todd N, McDannold N, Borsook D. Targeted manipulation of pain neural networks: The potential of focused ultrasound for treatment of chronic pain. Neurosci Biobehav Rev. 2020;115:238-50.
  10. Alice Huai-Yu L, Anuj B, Amit G, Einar O. Role of peripheral nerve stimulation in treating chronic neuropathic pain: an international focused survey of pain medicine experts. Regional Anesthesia & Pain Medicine. 2023;48(6):312.
  11. Yu K, Niu X, He B. Neuromodulation Management of Chronic Neuropathic Pain in The Central Nervous system. Adv Funct Mater. 2020;30(37).
  12. Baker JR, Bourne KM, Lamotte G. Recent updates in autonomic research: a focus on new technologies with high-resolution procedures to study sympathetic nerve activity, plasma proteomic profiling in POTS, and non-invasive neuromodulation with focused ultrasound. Clin Auton Res. 2023;33(1):11-4.
  13. Puleo C, Cotero V. Noninvasive Neuromodulation of Peripheral Nerve Pathways Using Ultrasound and Its Current Therapeutic Implications. Cold Spring Harb Perspect Med. 2020;10(2).
  14. Aimaijiang M, Liu Y, Zhang Z, Qin Q, Liu M, Abulikemu P, et al. LIPUS as a potential strategy for periodontitis treatment: A review of the mechanisms. Front Bioeng Biotechnol. 2023;11:1018012.
  15. Ferreira-Silva N, Ferreira-Dos-Santos G, Gupta S, Hunt CL, Eldrige JS, Pingree MJ, et al. Ultrasound-guided percutaneous peripheral nerve stimulation for chronic refractory neuropathic pain: a unique series. Pain Manag. 2023;13(1):15-24.
  16. Bao J, Byraju K, Patel VJ, Hellman A, Neubauer P, Burdette C, et al. The effects of low intensity focused ultrasound on neuronal activity in pain processing regions in a rodent model of common peroneal nerve injury. Neurosci Lett. 2022;789:136882.
  17. San-Emeterio-Iglesias R, Minaya-Muñoz F, Romero-Morales C, De-la-Cruz-Torres B. Correct Sciatic Nerve Management to Apply Ultrasound-Guided Percutaneous Neuromodulation in Patients With Chronic Low Back Pain: A Pilot Study. Neuromodulation. 2021;24(6):1067-74.
  18. Ketenci A, Zure M. Pharmacological and non-pharmacological treatment approaches to chronic lumbar back pain. Turk J Phys Med Rehabil. 2021;67(1):1-10.
  19. Wellington J. Noninvasive and alternative management of chronic low back pain (efficacy and outcomes). Neuromodulation. 2014;17 Suppl 2:24-30.
  20. Chen H, Jerusalem A. A Framework for Low-Intensity Low-Frequency Ultrasound Neuromodulation Sonication Parameter Identification from Micromechanical Flexoelectricity Modelling. Ultrasound in Medicine & Biology. 2021;47(7):1985-91.
  21. ENG Zuozuo; H, Gouchen; , Lixiaomin; , Wangxiaoming;. Application and progress of non-invasive neuromodulation techniques in chronic refractory pain. 2021(6).
  22. de Sire A, Lippi L, Curci C, Calafiore D, Cisari C, Ammendolia A, et al. Effectiveness of Combined Treatment Using Physical Exercise and Ultrasound-Guided Radiofrequency Ablation of Genicular Nerves in Patients with Knee Osteoarthritis. Applied Sciences [Internet]. 2021; 11(10).
  23. De-la-Cruz-Torres B, Abuín-Porras V, Navarro-Flores E, Calvo-Lobo C, Romero-Morales C. Ultrasound-Guided Percutaneous Neuromodulation in Patients with Chronic Lateral Epicondylalgia: A Pilot Randomized Clinical Trial. Int J Environ Res Public Health. 2021;18(9).
  24. di Biase L, Falato E, Caminiti ML, Pecoraro PM, Narducci F, Di Lazzaro V. Focused Ultrasound (FUS) for Chronic Pain Management: Approved and Potential Applications. Neurol Res Int. 2021;2021:8438498.
  25. Zhang MY, Li T, Qian XY, Liu H, Zhao QN, Liu CC, et al. Feasibility of Ultrasound-Guided Peritoneal Perfusion with Ozone in the Treatment of Chronic Pelvic Pain: A Bicenter Retrospective Analysis. Pain Physician. 2021;24(3):E367-e75.
  26. Liao YH, Wang B, Chen MX, Liu Y, Ao LJ. LIFU Alleviates Neuropathic Pain by Improving the KCC(2) Expression and Inhibiting the CaMKIV-KCC(2) Pathway in the L4-L5 Section of the Spinal Cord. Neural Plast. 2021;2021:6659668.
  27. Pérez-Neri I, González-Aguilar A, Sandoval H, Pineda C, Ríos C. Therapeutic Potential of Ultrasound Neuromodulation in Decreasing Neuropathic Pain: Clinical and Experimental Evidence. Curr Neuropharmacol. 2021;19(3):334-48.
  28. Lee SA, Kamimura HAS, Konofagou EE, editors. Focused ultrasound median nerve stimulation can modulate nociceptive pain. 2020 IEEE International Ultrasonics Symposium (IUS); 2020 7-11 Sept. 2020.
  29. Julien L, André M, editors. Transcranial focused ultrasonic stimulation to modulate the human primary somatosensory cortex. 2020 IEEE International Ultrasonics Symposium (IUS); 2020 7-11 Sept. 2020.
  30. Ottestad E, Orlovich DS. History of Peripheral Nerve Stimulation-Update for the 21st Century. Pain Med. 2020;21(Suppl 1):S3-s5.
  31. Salmasi V, Olatoye OO, Terkawi AS, Hah JM, Ottestad E, Pingree M. Peripheral Nerve Stimulation for Occipital Neuralgia. Pain Med. 2020;21(Suppl 1):S13-s7.
  32. Gregory NS, Terkawi AS, Prabhakar NK, Tran JV, Salmasi V, Hah JM. Peripheral Nerve Stimulation for Pudendal Neuralgia: A Technical Note. Pain Med. 2020;21(Suppl 1):S51-s5.
  33. Gilmore CA, Patel J, Esebua LG, Burchell M. A Review of Peripheral Nerve Stimulation Techniques Targeting the Medial Branches of the Lumbar Dorsal Rami in the Treatment of Chronic Low Back Pain. Pain Med. 2020;21(Suppl 1):S41-s6.
  34. Hanyu-Deutmeyer A, Pritzlaff SG. Peripheral Nerve Stimulation for the 21st Century: Sural, Superficial Peroneal, and Tibial Nerves. Pain Med. 2020;21(Suppl 1):S64-s7.
  35. Herschkowitz D, Kubias J. A case report of wireless peripheral nerve stimulation for complex regional pain syndrome type-I of the upper extremity: 1 year follow up. Scand J Pain. 2019;19(4):829-35.
  36. Lerman IR, Chen JL, Hiller D, Souzdalnitski D, Sheean G, Wallace M, et al. Novel High-Frequency Peripheral Nerve Stimulator Treatment of Refractory Postherpetic Neuralgia: A Brief Technical Note. Neuromodulation. 2015;18(6):487-93; discussion 93.
  37. Burgher AH, Huntoon MA, Turley TW, Doust MW, Stearns LJ. Subcutaneous peripheral nerve stimulation with inter-lead stimulation for axial neck and low back pain: case series and review of the literature. Neuromodulation. 2012;15(2):100-6; discussion 6-7.
  38. Chan I, Brown AR, Park K, Winfree CJ. Ultrasound-guided, percutaneous peripheral nerve stimulation: technical note. Neurosurgery. 2010;67(3 Suppl Operative):ons136-9.
  39. Kiliç S, Özkan F, Külcü DG, Öztürk G, Akpinar P, Aktas I. Conservative Treatment Versus Ultrasound-Guided Injection in the Management of Meralgia Paresthetica: A Randomized Controlled Trial. Pain Physician. 2020;23(3):253-62.
  40. Stockdale CK, Lawson HW. 2013 Vulvodynia Guideline update. J Low Genit Tract Dis. 2014;18(2):93-100.
  41. Rauck RL, Cohen SP, Gilmore CA, North JM, Kapural L, Zang RH, et al. Treatment of post-amputation pain with peripheral nerve stimulation. Neuromodulation. 2014;17(2):188-97.
  42. Joseph JH. Nonsurgical neck laxity correction. Clin Plast Surg. 2014;41(1):7-9.
  43. Walega DR, Chung B. Chronic postherniorrhaphy pain following inguinal hernia surgery: Etiology, risk factors, anatomy, and treatment options. Techniques in Regional Anesthesia and Pain Management. 2011;15(3):104-9.
  44. Gofeld M. Ultrasound-guided caudad epidural access for the lumbosacral neurostimulation: case report and technical note. Neuromodulation. 2011;14(1):68-71; discussion
  45. Tjandra JJ, Chan MK, Yeh CH, Murray-Green C. Sacral nerve stimulation is more effective than optimal medical therapy for severe fecal incontinence: a randomized, controlled study. Dis Colon Rectum. 2008;51(5):494-502.
  46. Govaert B, Melenhorst J, Link G, Hoogland H, van Gemert W, Baeten C. The effect of sacral nerve stimulation on uterine activity: a pilot study. Colorectal Dis. 2010;12(5):448-51.
  47. Brouwer R, Duthie G. Sacral nerve neuromodulation is effective treatment for fecal incontinence in the presence of a sphincter defect, pudendal neuropathy, or previous sphincter repair. Dis Colon Rectum. 2010;53(3):273-8.
  48. Carayannopoulos A, Beasley R, Sites B. Facilitation of percutaneous trial lead placement with ultrasound guidance for peripheral nerve stimulation trial of ilioinguinal neuralgia: a technical note. Neuromodulation. 2009;12(4):296-301.
  49. Ortiz DD. Chronic pelvic pain in women. Am Fam Physician. 2008;77(11):1535-42.
  50. Malhotra N, Joshi M, Dey S, Sahoo R, Verma S, Asish K. Recent trends in chronic pain medicine. Indian J Anaesth. 2023;67(1):123-9.
  51. Ohlendorf B, Grant SA. Percutaneous Peripheral Nerve Stimulation in Acute Pain Medicine. Current Anesthesiology Reports. 2017;7(2):220-6.
  52. Adams ML, Arminio GJ. Non-pharmacologic pain management intervention. Clin Podiatr Med Surg. 2008;25(3):409-29; vi.
  53. Shaffer JP, Williams VB, Shin SS. Cryoneurolysis for Digital Neuralgia in Professional Baseball Players: A Case Series. Orthop J Sports Med. 2022;10(5):23259671221096095.
  54. Ilfeld BM, Gilmore CA, Grant SA, Bolognesi MP, Del Gaizo DJ, Wongsarnpigoon A, et al. Ultrasound-guided percutaneous peripheral nerve stimulation for analgesia following total knee arthroplasty: a prospective feasibility study. J Orthop Surg Res. 2017;12(1):4.
  55. Zhang T, Wang Z, Liang H, Wu Z, Li J, Ou-Yang J, et al. Transcranial Focused Ultrasound Stimulation of Periaqueductal Gray for Analgesia. IEEE Trans Biomed Eng. 2022;69(10):3155-62.
  56. Asensio-Samper JM, De Andrés-Ibáñez J, Fabregat Cid G, Villanueva Pérez V, Alarcón L. Ultrasound-guided transversus abdominis plane block for spinal infusion and neurostimulation implantation in two patients with chronic pain. Pain Pract. 2010;10(2):158-62.
  57. Bao J, Tangney T, Pilitsis JG. Focused Ultrasound for Chronic Pain. Neurosurgery Clinics. 2022;33(3):331-8.
  58. Brenner B, Ericson T, Kohan L. Advances in Non-Invasive Neuromodulation. Curr Pain Headache Rep. 2022;26(10):709-17.
  59. Hameroff S, Trakas M, Duffield C, Annabi E, Gerace MB, Boyle P, et al. Transcranial ultrasound (TUS) effects on mental states: a pilot study. Brain Stimul. 2013;6(3):409-15.
  60. Martin E, Werner B. Focused Ultrasound Surgery of the Brain. Current Radiology Reports. 2013;1(2):126-35.
  61. Shankar H. Ultrasound-Guided Localization of Difficult-to-Access Refill Port of the Intrathecal Pump Reservoir. Neuromodulation. 2009;12(3):215-8.
  62. Xiao X, Chai G, Liu L, Jiang L, Luo F. Long-term Outcomes of Pulsed Radiofrequency for Supraorbital Neuralgia: A Retrospective Multicentric Study. Pain Physician. 2022;25(7):E1121-e8.
  63. Bouche B, Manfiotto M, Rigoard P, Lemarie J, Dix-Neuf V, Lanteri-Minet M, et al. Peripheral Nerve Stimulation of Brachial Plexus Nerve Roots and Supra-Scapular Nerve for Chronic Refractory Neuropathic Pain of the Upper Limb. Neuromodulation. 2017;20(7):684-9.
  64. García-Bermejo P, De-la-Cruz-Torres B, Romero-Morales C. Ultrasound-Guided Percutaneous Neuromodulation in Patients with Unilateral Anterior Knee Pain: A Randomized Clinical Trial. Applied Sciences [Internet]. 2020; 10(13).
  65. Ghaly RF, Tverdohleb T, Candido KD, Knezevic NN. Do we need to establish guidelines for patients with neuromodulation implantable devices, including spinal cord stimulators undergoing nonspinal surgeries? Surg Neurol Int. 2016;7:18.
  66. Gupta M, Goodson R. Transverse abdominal plane neurostimulation for chronic abdominal pain: a novel technique. Pain Physician. 2014;17(5):E619-22.
  67. Huntoon MA, Burgher AH. Ultrasound-guided permanent implantation of peripheral nerve stimulation (PNS) system for neuropathic pain of the extremities: original cases and outcomes. Pain Med. 2009;10(8):1369-77.
  68. Ilfeld BM, Gelfand H, Dhanjal S, Hackworth R, Plunkett A, Turan A, et al. Ultrasound-Guided Percutaneous Peripheral Nerve Stimulation: A Pragmatic Effectiveness Trial of a Nonpharmacologic Alternative for the Treatment of Postoperative Pain. Pain Med. 2020;21(Suppl 2):S53-s61.
  69. Khan R, Gillespie G. Implantable technology for pain management. Anaesthesia & Intensive Care Medicine. 2013;14(12):520-3.
  70. Luo F, Lu J, Ji N. Treatment of Refractory Idiopathic Supraorbital Neuralgia Using Percutaneous Pulsed Radiofrequency. Pain Pract. 2018;18(7):871-8.
  71. Meier K, Bendtsen TF, Sørensen JC, Nikolajsen L. Peripheral Neuromodulation for the Treatment of Postamputation Neuroma Pain: A Case Report. A A Case Rep. 2017;8(2):29-30.
  72. Orduña Valls JM, Soto E, Ferrandis Martínez M, Nebreda C, Tornero Tornero C. Cervical plexus as anatomical target for the treatment of postoperative cervical neuropathic pain. J Pain Res. 2019;12:1217-21.
  73. Tan H, Stedelin B, Bakr SM, Nerison C, Raslan AM. Neurosurgical Ablation for Pain: A Technology Review. World Neurosurg. 2023;170:114-22.
  74. Torres JE, Nagpal AS, Iya A, McGeary D, Srinivasan M. Interventional treatment options for women with pelvic pain. Curr Phys Med Rehabil Rep. 2020;8(3):229-39.
  75. Lea-Banks H, O'Reilly MA, Hamani C, Hynynen K. Localized anesthesia of a specific brain region using ultrasound-responsive barbiturate nanodroplets. Theranostics. 2020;10(6):2849-58.
  76. Ilfeld BM, Grant SA, Gilmore CA, Chae J, Wilson RD, Wongsarnpigoon A, et al. Neurostimulation for Postsurgical Analgesia: A Novel System Enabling Ultrasound-Guided Percutaneous Peripheral Nerve Stimulation. Pain Pract. 2017;17(7):892-901.
  77. Ilfeld BM, Said ET, Finneran JJt, Sztain JF, Abramson WB, Gabriel RA, et al. Ultrasound-Guided Percutaneous Peripheral Nerve Stimulation: Neuromodulation of the Femoral Nerve for Postoperative Analgesia Following Ambulatory Anterior Cruciate Ligament Reconstruction: A Proof of Concept Study. Neuromodulation. 2019;22(5):621-9.
  78. Yang FY, Chan WH, Gao CY, Zheng YT, Ke CH. Transabdominal ultrasound alleviates LPS-induced neuroinflammation by modulation of TLR4/NF-κB signaling and tight junction protein expression. Life Sci. 2023;325:121769.
  79. Asher R, Hyun I, Head M, Cosgrove GR, Silbersweig D. Neuroethical implications of focused ultrasound for neuropsychiatric illness. Brain Stimul. 2023;16(3):806-14.
  80. Kuo MF, Paulus W, Nitsche MA. Therapeutic effects of non-invasive brain stimulation with direct currents (tDCS) in neuropsychiatric diseases. Neuroimage. 2014;85 Pt 3:948-60.
  81. Cambiaghi M, Cordaro M, Dossena S, Cuzzocrea S, Buffelli M. Editorial: Non-invasive brain stimulation techniques in neurological and neuropsychiatric disorders: Physiological and molecular evidence. Front Syst Neurosci. 2023;17:1128205.
  82. Guinjoan SM. Personalized definition of surgical targets in major depression and obsessive-compulsive disorder: A potential role for low-intensity focused ultrasound? Personalized Medicine in Psychiatry. 2023;37-38:100100.
  83. Kochanski RB, Slavin KV. The future perspectives of psychiatric neurosurgery. Prog Brain Res. 2022;270(1):211-28.
  84. Tsuji T, Mizutani R, Minami K, Furuhara K, Fujisaku T, Pinyue F, et al. Oxytocin administration modulates the complex type of ultrasonic vocalisation of mice pups prenatally exposed to valproic acid. Neurosci Lett. 2021;758:135985.
  85. Xiao L, Huo X, Wang Y, Li W, Li M, Wang C, et al. A bibliometric analysis of global research status and trends in neuromodulation techniques in the treatment of autism spectrum disorder. BMC Psychiatry. 2023;23(1):183.
  86. ZHAI Zhao-lin; LD-t. Research status and prospect of transcranial focused ultrasound stimulation in treatment of psychiatric disorders. 2021(1):95-8.
  87. Mahoney DE, Green AL. Psychosurgery: History of the Neurosurgical Management of Psychiatric Disorders. World Neurosurg. 2020;137:327-34.
  88. Sanguinetti JL, Hameroff S, Smith EE, Sato T, Daft CMW, Tyler WJ, et al. Transcranial Focused Ultrasound to the Right Prefrontal Cortex Improves Mood and Alters Functional Connectivity in Humans. Frontiers in Human Neuroscience. 2020;14.
  89. Zhang D, Li H, Sun J, Hu W, Jin W, Li S, et al. Antidepressant-Like Effect of Low-Intensity Transcranial Ultrasound Stimulation. IEEE Trans Biomed Eng. 2019;66(2):411-20.
  90. Mooney SJ, Nobrega JN, Levitt AJ, Hynynen K. Antidepressant effects of focused ultrasound induced blood-brain-barrier opening. Behav Brain Res. 2018;342:57-61.
  91. Giacobbe P, Mithani K, Bhat V, Meng Y. Chapter 9 - Neurocircuitry-Based Treatments for Major Depressive Disorder. In: McIntyre RS, editor. Major Depressive Disorder. Philadelphia (PA): Elsevier; 2020. p. 121-9.
  92. Qi S, Li Y, Zhang W, Chen J. Design of A Novel Wearable LIPUS Treatment Device for Mental Health Treatment. Annu Int Conf IEEE Eng Med Biol Soc. 2018;2018:6052-5.
  93. Nijensohn DE, Dagi TF. Neurosurgical Intervention for Treatment-Resistant Psychiatric Disorders. In: Kim Y-K, editor. Treatment Resistance in Psychiatry: Risk Factors, Biology, and Management. Singapore: Springer Singapore; 2019. p. 377-403.
  94. Rosa MA, Lisanby SH. Somatic treatments for mood disorders. Neuropsychopharmacology. 2012;37(1):102-16.
  95. Tatti E, Phillips AL, Paciorek R, Romanella SM, Dettore D, Di Lorenzo G, et al. Boosting psychological change: Combining non-invasive brain stimulation with psychotherapy. Neurosci Biobehav Rev. 2022;142:104867.
  96. Azmi H. Neuromodulation for Cognitive Disorders: In Search of Lazarus? Neurol India. 2020;68(Supplement):S288-s96.
  97. Beisteiner R, Matt E, Fan C, Baldysiak H, Schönfeld M, Philippi Novak T, et al. Transcranial Pulse Stimulation with Ultrasound in Alzheimer's Disease—A New Navigated Focal Brain Therapy. Advanced Science. 2020;7(3):1902583.
  98. Cheyuo C, Germann J, Yamamoto K, Vetkas A, Loh A, Sarica C, et al. Connectomic neuromodulation for Alzheimer’s disease: A systematic review and meta-analysis of invasive and non-invasive techniques. Translational Psychiatry. 2022;12(1):490.
  99. Dörl G, Matt E, Beisteiner R. Functional Specificity of TPS Brain Stimulation Effects in Patients with Alzheimer's Disease: A Follow-up fMRI Analysis. Neurol Ther. 2022;11(3):1391-8.
  100. Götz J, Richter-Stretton G, Cruz E. Therapeutic Ultrasound as a Treatment Modality for Physiological and Pathological Ageing Including Alzheimer's Disease. Pharmaceutics. 2021;13(7).
  101. He J, Zhu Y, Wu C, Wu J, Chen Y, Yuan M, et al. Simultaneous multi-target ultrasound neuromodulation in freely-moving mice based on a single-element ultrasound transducer. J Neural Eng. 2023;20(1).
  102. Kong C, Ahn JW, Kim S, Park JY, Na YC, Chang JW, et al. Long-lasting restoration of memory function and hippocampal synaptic plasticity by focused ultrasound in Alzheimer's disease. Brain Stimul. 2023;16(3):857-66.
  103. Lin YC, Wang YP. Status of Noninvasive Brain Stimulation in the Therapy of Alzheimer's Disease. Chin Med J (Engl). 2018;131(24):2899-903.
  104. Lu H, Chan S, Lam L, Cheng C, Chan W-C, He H, et al. Towards individualized psychiatric practice: The legacy of neurotherapeutics (in Chinese). Science Bulletin. 2018;63.
  105. Pople CB, Meng Y, Li DZ, Bigioni L, Davidson B, Vecchio LM, et al. Neuromodulation in the Treatment of Alzheimer's Disease: Current and Emerging Approaches. J Alzheimers Dis. 2020;78(4):1299-313.
  106. Rojas-Carvajal M, Sequeira-Cordero A, Brenes JC. Neurobehavioral Effects of Restricted and Unpredictable Environmental Enrichment in Rats. Front Pharmacol. 2020;11:674.
  107. Song D, Chen X, Zhou N, Yuan Y, Geng S, Zhang C, et al. Low-intensity pulsed ultrasound triggers a beneficial neuromodulation in dementia mice with chronic cerebral hypoperfusion via activation of hippocampal Fndc5/irisin signaling. Journal of Translational Medicine. 2023;21(1):139.
  108. Al-Harbi KS, Qureshi NA. Neuromodulation therapies and treatment-resistant depression. Med Devices (Auckl). 2012;5:53-65.
  109. Forster A, Rodrigues J, Ziebell P, Sanguinetti JL, Allen JJB, Hewig J. Transcranial focused ultrasound modulates the emergence of learned helplessness via midline theta modification. J Affect Disord. 2023;329:273-84.
  110. Guo B, Zhang M, Hao W, Wang Y, Zhang T, Liu C. Neuroinflammation mechanisms of neuromodulation therapies for anxiety and depression. Transl Psychiatry. 2023;13(1):5.
  111. Reznik SJ, Sanguinetti JL, Tyler WJ, Daft C, Allen JJB. A double-blind pilot study of transcranial ultrasound (TUS) as a five-day intervention: TUS mitigates worry among depressed participants. Neurology, Psychiatry and Brain Research. 2020;37:60-6.
  112. Vlaicu A, Bustuchina Vlaicu M. New neuromodulation techniques for treatment resistant depression. Int J Psychiatry Clin Pract. 2020;24(2):106-15.
  113. Yi SS, Zou JJ, Meng L, Chen HM, Hong ZQ, Liu XF, et al. Ultrasound Stimulation of Prefrontal Cortex Improves Lipopolysaccharide-Induced Depressive-Like Behaviors in Mice. Front Psychiatry. 2022;13:864481.
  114. Zhang J, Zhou H, Yang J, Jia J, Niu L, Sun Z, et al. Low-intensity pulsed ultrasound ameliorates depression-like behaviors in a rat model of chronic unpredictable stress. CNS Neurosci Ther. 2021;27(2):233-43.
  115. Zhu Y, He J, Wu C, Wu J, Cheng Z, Chen Y, et al., editors. Multi-Target Ultrasound Neuromodulation in the Treatment of Freely Moving Depression Mice. 2022 IEEE International Ultrasonics Symposium (IUS); 2022 10-13 Oct. 2022.
  116. Zhu Y, He J, Wu C, Wu J, Cheng Z, Chen Y, et al. Transcranial ultrasound stimulation relieves depression in mice with chronic restraint stress. J Neural Eng. 2023;20(3).
  117. Barra A, Monti M, Thibaut A. Noninvasive Brain Stimulation Therapies to Promote Recovery of Consciousness: Where We Are and Where We Should Go. Semin Neurol. 2022;42(3):348-62.
  118. Chang KW, Jung HH, Chang JW. Magnetic Resonance-Guided Focused Ultrasound Surgery for Obsessive-Compulsive Disorders: Potential for use as a Novel Ablative Surgical Technique. Front Psychiatry. 2021;12:640832.
  119. Deveci E, Akbaş F, Ergun A, Kurtulmuş A, Koçak AB, Boyraz RK, et al. The Effects of Transcranial Focused Ultrasound Stimulation of Nucleus Accumbens on Neuronal Gene Expression and Brain Tissue in High Alcohol-Preferring Rats. Mol Neurobiol. 2023;60(2):1099-116.
  120. Germann J, Elias GJB, Neudorfer C, Boutet A, Chow CT, Wong EHY, et al. Potential optimization of focused ultrasound capsulotomy for obsessive compulsive disorder. Brain. 2021;144(11):3529-40.
  121. Messina G, Vetrano IG, Bonomo G, Broggi G. Role of deep brain stimulation in management of psychiatric disorders. Prog Brain Res. 2022;270(1):61-96.
  122. Pouchon A, Polosan M, Dondé C. Interventional psychiatry: Why an umbrella term is useful? Australian & New Zealand Journal of Psychiatry. 2022;56(8):1044-.
  123. Regenold WT, Deng ZD, Lisanby SH. Noninvasive neuromodulation of the prefrontal cortex in mental health disorders. Neuropsychopharmacology. 2022;47(1):361-72.
  124. Burgdorf JS, Brudzynski SM, Moskal JR. Using rat ultrasonic vocalization to study the neurobiology of emotion: from basic science to the development of novel therapeutics for affective disorders. Curr Opin Neurobiol. 2020;60:192-200.
  125. Trapp NT, Williams NR. The Future of Training and Practice in Neuromodulation: An Interventional Psychiatry Perspective. Frontiers in Psychiatry. 2021;12.
  126. Acheta J, Stephens SBZ, Belin S, Poitelon Y. Therapeutic Low-Intensity Ultrasound for Peripheral Nerve Regeneration – A Schwann Cell Perspective. Frontiers in Cellular Neuroscience. 2022;15.
  127. Afif S, Rehan ST, Ul Hussain H, Islam MS. Low-intensity focused ultrasound, a novel approach to epilepsy treatment in developing countries. Brain Behav. 2023;13(1):e2852.
  128. Aurup C, Pouliopoulos AN, Kwon N, Murillo MF, Konofagou EE. Evaluation of Non-invasive Optogenetic Stimulation with Transcranial Functional Ultrasound Imaging. Ultrasound Med Biol. 2023;49(3):908-17.
  129. Behl T, Kaur I, Kumar A, Mehta V, Zengin G, Arora S. Gene Therapy in the Management of Parkinson's Disease: Potential of GDNF as a Promising Therapeutic Strategy. Curr Gene Ther. 2020;20(3):207-22.
  130. Beisteiner R, Hallett M. Transcranial Pulse Stimulation (TPS) - A highly focused brain stimulation therapy with 3D navigation. Clin Neurophysiol. 2022;136:247-8.
  131. Bex A, Bex V, Carpentier A, Mathon B. Therapeutic ultrasound: The future of epilepsy surgery? Rev Neurol (Paris). 2022;178(10):1055-65.
  132. Bubrick EJ, McDannold NJ, White PJ. Low Intensity Focused Ultrasound for Epilepsy— A New Approach to Neuromodulation. Epilepsy Currents. 2022;22(3):156-60.
  133. Burd S.G. LAV, Avakyan G.G., Rubleva Yu.V., Senko I.V., Pantina N.V., Yurchenko A.V., Kovaleva I.I. Application of focused ultrasound in the treatment of epilepsy. Epilepsy and paroxysmal conditions. 2022(3):294-303.
  134. Carruthers J, Carruthers A. A Multimodal Approach to Rejuvenation of the Lower Face. Dermatol Surg. 2016;42 Suppl 2:S89-93.
  135. Chazen JL, Sarva H, Stieg PE, Min RJ, Ballon DJ, Pryor KO, et al. Clinical improvement associated with targeted interruption of the cerebellothalamic tract following MR-guided focused ultrasound for essential tremor. J Neurosurg. 2018;129(2):315-23.
  136. Chen H, Felix C, Folloni D, Verhagen L, Sallet J, Jerusalem A. Modelling transcranial ultrasound neuromodulation: an energy-based multiscale framework. Acta Biomaterialia. 2022;151:317-32.
  137. Chen M, Wang S, Li X, Yu L, Yang H, Liu Q, et al. Non-invasive Autonomic Neuromodulation Is Opening New Landscapes for Cardiovascular Diseases. Front Physiol. 2020;11:550578.
  138. Choi JH, Choi SC, Kim DK, Sung CH, Chon JY, Hong SJ, et al. Combined Spinal Cord Stimulation and Peripheral Nerve Stimulation for Brachial Plexopathy: A Case Report. Pain Physician. 2016;19(3):E459-63.
  139. Chrona E, Kostopanagiotou G, Damigos D, Batistaki C. Anterior cutaneous nerve entrapment syndrome: management challenges. J Pain Res. 2017;10:145-56.
  140. Chun-Chan LI, Jia-Jia Y, Jin-Zhen LIU, Chen-Guang Z, Yu-Tao T, Feng HE, et al. The Application of Transcranial Ultrasound in The Treatment of Parkinson’s Disease. 生物化学与生物物理进展(英文版). 2023;50(1):25-37.
  141. Cole RC, Okine DN, Yeager BE, Narayanan NS. Neuromodulation of cognition in Parkinson's disease. Prog Brain Res. 2022;269(1):435-55.
  142. Dallapiazza R, McKisic MS, Shah B, Elias WJ. Neuromodulation for movement disorders. Neurosurg Clin N Am. 2014;25(1):47-58.
  143. Darmani G, Chen R. Reply to "Transcranial Pulse Stimulation (TPS) - A highly focused brain stimulation therapy with 3D navigation". Clin Neurophysiol. 2022;136:249.
  144. Datta A, Batra N, Pandey S. Primary Writing Tremor: Current Concepts. Ann Indian Acad Neurol. 2021;24(3):319-26.
  145. Dawit S, Crepeau AZ. When Drugs Do Not Work: Alternatives to Antiseizure Medications. Curr Neurol Neurosci Rep. 2020;20(9):37.
  146. Dorfer C, Rydenhag B, Baltuch G, Buch V, Blount J, Bollo R, et al. How technology is driving the landscape of epilepsy surgery. Epilepsia. 2020;61(5):841-55.
  147. Ebrahim AA, Tungu A. Neuromodulation for temporal lobe epilepsy: a scoping review. Acta Epileptologica. 2022;4(1):25.
  148. Elahi F, Reddy C. Neuromodulation of the great auricular nerve for persistent post-traumatic headache. Pain Physician. 2014;17(4):E531-6.
  149. Ellenbogen JR, Ashkan K. Neurosurgery of epilepsy, movement disorders and pain. Surgery (Oxford). 2018;36(11):655-63.
  150. Fan CH, Wei KC, Chiu NH, Liao EC, Wang HC, Wu RY, et al. Sonogenetic-Based Neuromodulation for the Amelioration of Parkinson's Disease. Nano Lett. 2021;21(14):5967-76.
  151. Farber SH, Han JL, Petraglia Iii FW, Gramer R, Yang S, Pagadala P, et al. Increasing Rates of Imaging in Failed Back Surgery Syndrome Patients: Implications for Spinal Cord Stimulation. Pain Physician. 2017;20(6):E969-e77.
  152. French JA, Schachter SC, Sirven J, Porter R. The Epilepsy Foundation's 4th Biennial Epilepsy Pipeline Update Conference. Epilepsy Behav. 2015;46:34-50.
  153. Garay Badenian N, Benech N, Cortela G, Prinzo H, Simini F. CENEPSIA: feasibility of an ultrasound device to treat epileptic refractory foci. Research on Biomedical Engineering. 2023.
  154. Gilmore CA, Kapural L, McGee MJ, Boggs JW. Percutaneous Peripheral Nerve Stimulation (PNS) for the Treatment of Chronic Low Back Pain Provides Sustained Relief. Neuromodulation. 2019;22(5):615-20.
  155. Guo J, Lo WLA, Hu H, Yan L, Li L. Transcranial ultrasound stimulation applied in ischemic stroke rehabilitation: A review. Front Neurosci. 2022;16:964060.
  156. Guo T, Li H, Lv Y, Lu H, Niu J, Sun J, et al. Pulsed Transcranial Ultrasound Stimulation Immediately After The Ischemic Brain Injury is Neuroprotective. IEEE Trans Biomed Eng. 2015;62(10):2352-7.
  157. Gushcha AO, Tyurnikov VM, Kashcheev AA. Modern Aspects of Surgical Neuromodulation. Human Physiology. 2022;48(8):962-7.
  158. Hampton T. Noninvasive Ultrasound May Help Treat Inflammation and Other Conditions. JAMA. 2019;321(21):2064-5.
  159. Haupt RW, Fenn AJ, Brigada DJ, Laher RM, Samir AE, editors. Noninvasive Transcranial Ultrasound System. 2022 IEEE International Ultrasonics Symposium (IUS); 2022 10-13 Oct. 2022.
  160. Hellman A, Maietta T, Byraju K, Linda Park Y, Shao M, Liss A, et al. Low Intensity Focused Ultrasound Modulation of Vincristine Induced Neuropathy. Neuroscience. 2020;430:82-93.
  161. Hoffman BU, Baba Y, Lee SA, Tong C-K, Konofagou EE, Lumpkin EA. Focused ultrasound excites action potentials in mammalian peripheral neurons in part through the mechanically gated ion channel PIEZO2. Proceedings of the National Academy of Sciences. 2022;119(21):e2115821119.
  162. Hong G. Seeing the sound. Science. 2020;369(6504):638-.
  163. Hu Z, Yang Y, Xu L, Hao Y, Chen H. Binary acoustic metasurfaces for dynamic focusing of transcranial ultrasound. Frontiers in Neuroscience. 2022;16.
  164. Huang L, Kang J, Chen G, Ye W, Meng X, Du Q, et al. Low-intensity focused ultrasound attenuates early traumatic brain injury by OX-A/NF-κB/NLRP3 signaling pathway. Aging (Albany NY). 2022;14(18):7455-69.
  165. Ilfeld BM, Finneran JJt, Gabriel RA, Said ET, Nguyen PL, Abramson WB, et al. Ultrasound-guided percutaneous peripheral nerve stimulation: neuromodulation of the suprascapular nerve and brachial plexus for postoperative analgesia following ambulatory rotator cuff repair. A proof-of-concept study. Reg Anesth Pain Med. 2019;44(3):310-8.
  166. Ilfeld BM, Gabriel RA, Said ET, Monahan AM, Sztain JF, Abramson WB, et al. Ultrasound-Guided Percutaneous Peripheral Nerve Stimulation: Neuromodulation of the Sciatic Nerve for Postoperative Analgesia Following Ambulatory Foot Surgery, a Proof-of-Concept Study. Reg Anesth Pain Med. 2018;43(6):580-9.
  167. Jiang Y, Huang Y, Luo X, Wu J, Zong H, Shi L, et al. Neural Stimulation In Vitro and In Vivo by Photoacoustic Nanotransducers. Matter. 2021;4(2):654-74.
  168. Kang KC, Kim YH, Kim JN, Kabir M, Zhang Y, Ghanouni P, et al. Increasing the transmission efficiency of transcranial ultrasound using a dual-mode conversion technique based on Lamb waves. J Acoust Soc Am. 2022;151(3):2159.
  169. Kim T, Kim T, Joo J, Ryu I, Lee S, Park E, et al. Modulation of EEG Frequency Characteristics by Low-Intensity Focused Ultrasound Stimulation in a Pentylenetetrazol-Induced Epilepsy Model. IEEE Access. 2021;9:59900-9.
  170. Kohan L, McKenna C, Irwin A. Ilioinguinal Neuropathy. Curr Pain Headache Rep. 2020;24(1):2.
  171. Krishna V, Sammartino F, Rezai A. A Review of the Current Therapies, Challenges, and Future Directions of Transcranial Focused Ultrasound Technology: Advances in Diagnosis and Treatment. JAMA Neurol. 2018;75(2):246-54.
  172. Kurt E, van Eijk T, Henssen D, Arnts I, Steegers M. Neuromodulation of the Suprascapular Nerve. Pain Physician. 2016;19(1):E235-9.
  173. Kuzan-Fischer CM, Parker WE, Schwartz TH, Hoffman CE. Challenges of Epilepsy Surgery. World Neurosurg. 2020;139:762-74.
  174. Landhuis E. Ultrasound for the brain. Nature. 2017;551(7679):257-9.
  175. Lee CC, Chou CC, Hsiao FJ, Chen YH, Lin CF, Chen CJ, et al. Pilot study of focused ultrasound for drug-resistant epilepsy. Epilepsia. 2022;63(1):162-75.
  176. Lee DJ, Lozano AM. The Future of Surgical Treatments for Parkinson's Disease. J Parkinsons Dis. 2018;8(s1):S79-s83.
  177. Lee KS, Clennell B, Steward TGJ, Gialeli A, Cordero-Llana O, Whitcomb DJ. Focused Ultrasound Stimulation as a Neuromodulatory Tool for Parkinson's Disease: A Scoping Review. Brain Sci. 2022;12(2).
  178. Legon W, Adams S, Bansal P, Patel PD, Hobbs L, Ai L, et al. A retrospective qualitative report of symptoms and safety from transcranial focused ultrasound for neuromodulation in humans. Scientific Reports. 2020;10(1):5573.
  179. Lescrauwaet E, Vonck K, Sprengers M, Raedt R, Klooster D, Carrette E, et al. Recent Advances in the Use of Focused Ultrasound as a Treatment for Epilepsy. Front Neurosci. 2022;16:886584.
  180. Li X, Yang H, Yan J, Wang X, Li X, Yuan Y. Low-Intensity Pulsed Ultrasound Stimulation Modulates the Nonlinear Dynamics of Local Field Potentials in Temporal Lobe Epilepsy. Front Neurosci. 2019;13:287.
  181. Lin Z, Meng L, Zou J, Zhou W, Huang X, Xue S, et al. Non-invasive ultrasonic neuromodulation of neuronal excitability for treatment of epilepsy. Theranostics. 2020;10(12):5514-26.
  182. Linares G. On the Horizon: Innovative Techniques and Procedures. In: Edgell RC, M. Christopher K, editors. Neurointervention in the Medical Specialties: A Comprehensive Guide. Cham: Springer International Publishing; 2022. p. 273-7.
  183. Lu H, Wang X, Lou X. Current applications for magnetic resonance-guided focused ultrasound in the treatment of Parkinson's disease. Chin Med J (Engl). 2023;136(7):780-7.
  184. Luo H, Shusta EV. Blood-Brain Barrier Modulation to Improve Glioma Drug Delivery. Pharmaceutics. 2020;12(11).
  185. Maesawa S, Torii J, Nakatsubo D, Noda H, Mutoh M, Ito Y, et al. A case report: Dual-lead deep brain stimulation of the posterior subthalamic area and the thalamus was effective for Holmes tremor after unsuccessful focused ultrasound thalamotomy. Front Hum Neurosci. 2022;16:1065459.
  186. Mark N, Anna M, Andrew WM, John SD. Advances in epilepsy surgery. Journal of Neurology, Neurosurgery & Psychiatry. 2014;85(11):1273.
  187. Mathon B, Bédos-Ulvin L, Baulac M, Dupont S, Navarro V, Carpentier A, et al. [Evolution of ideas and techniques, and future prospects in epilepsy surgery]. Rev Neurol (Paris). 2015;171(2):141-56.
  188. McDonald PJ, Hrincu V, Connolly MB, Harrison MJ, Ibrahim GM, Naftel RP, et al. Novel Neurotechnological Interventions for Pediatric Drug-Resistant Epilepsy: Physician Perspectives. J Child Neurol. 2021;36(3):222-9.
  189. Meng Y, Pople CB, Budiansky D, Li D, Suppiah S, Lim-Fat MJ, et al. Current state of therapeutic focused ultrasound applications in neuro-oncology. J Neurooncol. 2022;156(1):49-59.
  190. Mindermann T. Radiosurgery for mesial temporal lobe epilepsy. Acta Neurochirurgica. 2015;157(10):1793-4.
  191. Moosa SE, W.J. Essential Tremor: Lesions. Stereotactic and Functional Neurosurgery: Principles and Applications2020. p. 297-310.
  192. Murphy KR, Farrell JS, Gomez JL, Stedman QG, Li N, Leung SA, et al. A tool for monitoring cell type-specific focused ultrasound neuromodulation and control of chronic epilepsy. Proc Natl Acad Sci U S A. 2022;119(46):e2206828119.
  193. Nandi T, Johnstone A, Martin E, Zich C, Cooper R, Bestmann S, et al. Ramped V1 transcranial ultrasonic stimulation modulates but does not evoke visual evoked potentials. Brain Stimul. 2023;16(2):553-5.
  194. Natera-Villalba E, Matarazzo M, Martinez-Fernandez R. Update in the clinical application of focused ultrasound. Curr Opin Neurol. 2022;35(4):525-35.
  195. Ntetsika T, Papathoma PE, Markaki I. Novel targeted therapies for Parkinson's disease. Mol Med. 2021;27(1):17.
  196. Oh DS, Kang TH, Kim HJ. Pulsed radiofrequency on radial nerve under ultrasound guidance for treatment of intractable lateral epicondylitis. J Anesth. 2016;30(3):498-502.
  197. Onishi ET, Coelho CCB, Oiticica J, Figueiredo RR, Guimarães RCC, Sanchez TG, et al. Tinnitus and sound intolerance: evidence and experience of a Brazilian group. Braz J Otorhinolaryngol. 2018;84(2):135-49.
  198. Paulo DL, Ball TJ, Englot DJ. Emerging Technologies for Epilepsy Surgery. Neurol Clin. 2022;40(4):849-67.
  199. Pittelkow TP, Pagani-Estevez GL, Landry B, Pingree MJ, Eldrige JS. Occipital Neuromodulation: A Surgical Technique with Reduced Complications. Pain Physician. 2016;19(7):E1005-12.
  200. Qi X, Sun J, Zhu J, Kong D, Roberts N, Dong Y, et al. SPatiotemporal-ENcoded acoustic radiation force imaging of focused ultrasound. Front Hum Neurosci. 2023;17:1184629.
  201. Rabut C, Yoo S, Hurt RC, Jin Z, Li H, Guo H, et al. Ultrasound Technologies for Imaging and Modulating Neural Activity. Neuron. 2020;108(1):93-110.
  202. Rajan R, Skorvanek M, Magocova V, Siddiqui J, AlSinaidi OA, Shinawi HM, et al. Neuromodulation Options and Patient Selection for Parkinson's Disease. Neurol India. 2020;68(Supplement):S170-s8.
  203. Ranjan M, Boutet A, Bhatia S, Wilfong A, Hader W, Lee MR, et al. Neuromodulation beyond neurostimulation for epilepsy: scope for focused ultrasound. Expert Rev Neurother. 2019;19(10):937-43.
  204. Rasul FT, Bal J, Pereira EA, Tisdall M, Themistocleous M, Haliasos N. Current Surgical Options for Patients with Epilepsy. Curr Pharm Des. 2017;23(42):6508-23.
  205. Rodrigues A, Rebelo C, Reis T, Simoes S, Bernardino L, Peça J, et al. Engineering optical tools for remotely controlled brain stimulation and regeneration. Biomaterials Science. 2023;11.
  206. Romero-Morales C, Bravo-Aguilar M, Abuín-Porras V, Almazán-Polo J, Calvo-Lobo C, Martínez-Jiménez EM, et al. Current advances and novel research on minimal invasive techniques for musculoskeletal disorders. Dis Mon. 2021;67(10):101210.
  207. Rossi PJ, Gunduz A, Judy J, Wilson L, Machado A, Giordano JJ, et al. Proceedings of the Third Annual Deep Brain Stimulation Think Tank: A Review of Emerging Issues and Technologies. Frontiers in Neuroscience. 2016;10.
  208. Sarica C, Fomenko A, Nankoo J-F, Darmani G, Vetkas A, Yamamoto K, et al. Toward focused ultrasound neuromodulation in deep brain stimulator implanted patients: Ex-vivo thermal, kinetic and targeting feasibility assessment. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation. 2022;15(2):376-9.
  209. Sarica C, Iorio-Morin C, Aguirre-Padilla DH, Najjar A, Paff M, Fomenko A, et al. Implantable Pulse Generators for Deep Brain Stimulation: Challenges, Complications, and Strategies for Practicality and Longevity. Front Hum Neurosci. 2021;15:708481.
  210. Sarica C, Nankoo JF, Fomenko A, Grippe TC, Yamamoto K, Samuel N, et al. Human Studies of Transcranial Ultrasound neuromodulation: A systematic review of effectiveness and safety. Brain Stimul. 2022;15(3):737-46.
  211. Serva SN, Bernstein J, Thompson JA, Kern DS, Ojemann SG. An update on advanced therapies for Parkinson's disease: From gene therapy to neuromodulation. Frontiers in Surgery. 2022;9.
  212. Shanker V. Essential tremor: diagnosis and management. BMJ. 2019;366:l4485.
  213. Sharabi S, Daniels D, Last D, Guez D, Zivli Z, Castel D, et al. Non-thermal focused ultrasound induced reversible reduction of essential tremor in a rat model. Brain Stimul. 2019;12(1):1-8.
  214. Shen QR, Hu MT, Feng W, Li KP, Wang W. Narrative Review of Noninvasive Brain Stimulation in Stroke Rehabilitation. Med Sci Monit. 2022;28:e938298.
  215. Singh M, Agrawal M. Deep Brain Stimulation for Tremor and Dystonia. Neurol India. 2020;68(Supplement):S187-s95.
  216. Song WS, Sung CY, Ke CH, Yang FY. Anti-inflammatory and Neuroprotective Effects of Transcranial Ultrasound Stimulation on Parkinson's Disease. Ultrasound Med Biol. 2022;48(2):265-74.
  217. Stern JM, Spivak NM, Becerra SA, Kuhn TP, Korb AS, Kronemyer D, et al. Safety of focused ultrasound neuromodulation in humans with temporal lobe epilepsy. Brain Stimul. 2021;14(4):1022-31.
  218. Stieglitz LH, Hofer AS, Bolliger M, Oertel MF, Filli L, Willi R, et al. Deep brain stimulation for locomotion in incomplete human spinal cord injury (DBS-SCI): protocol of a prospective one-armed multi-centre study. BMJ Open. 2021;11(9):e047670.
  219. Strauss I, Kalia SK, Lozano AM. Where are we with surgical therapies for Parkinson's disease? Parkinsonism Relat Disord. 2014;20 Suppl 1:S187-91.
  220. Su WS, Tsai ML, Huang SL, Liu SH, Yang FY. Controllable permeability of blood-brain barrier and reduced brain injury through low-intensity pulsed ultrasound stimulation. Oncotarget. 2015;6(39):42290-9.
  221. Taewon C, Minseok K, Jaesoon J, Taekyung K, Young-Min S, Jinhyoung P. Rebound Excitation of Epileptiform Activities by Transcranial Focused Ultrasound Stimulation. bioRxiv. 2022:2022.04.30.490021.
  222. Tang Z, Ma Q, Li Q, Hu J, Wang C, Jiao W, et al. Advances in applications of head mounted devices (HMDs): Physical techniques for drug delivery and neuromodulation. Journal of Controlled Release. 2023;354:810-20.
  223. Tarnaud T, Joseph W, Martens L, Tanghe E. Computational Modeling of Ultrasonic Subthalamic Nucleus Stimulation. IEEE Trans Biomed Eng. 2019;66(4):1155-64.
  224. Tarnaud T, Joseph W, Schoeters R, Martens L, Tanghe E. Improved alpha-beta power reduction via combined electrical and ultrasonic stimulation in a parkinsonian cortex-basal ganglia-thalamus computational model. J Neural Eng. 2021;18(6).
  225. Trask TS, Desai V. Surgical Treatment of Epilepsy. In: Agrawal A, Britz G, editors. Emergency Approaches to Neurosurgical Conditions. Cham: Springer International Publishing; 2015. p. 189-200.
  226. Verhagen Metman L, Pal G, Slavin K. Surgical Treatment of Parkinson's Disease. Curr Treat Options Neurol. 2016;18(11):49.
  227. Wang X, Xiong Y, Lin J, Lou X. Target Selection for Magnetic Resonance-Guided Focused Ultrasound in the Treatment of Parkinson's Disease. J Magn Reson Imaging. 2022;56(1):35-44.
  228. Weinreb E, Moses E. Mechanistic insights into ultrasonic neurostimulation of disconnected neurons using single short pulses. Brain Stimulation. 2022;15(3):769-79.
  229. Wiest R, Beisteiner R. Recent developments in imaging of epilepsy. Curr Opin Neurol. 2019;32(4):530-8.
  230. Xu K, Yang Y, Hu Z, Yue Y, Gong Y, Cui J, et al. TRPV1-mediated sonogenetic neuromodulation of motor cortex in freely moving mice. J Neural Eng. 2023;20(1).
  231. Xu T, Lu X, Peng D, Wang G, Chen C, Liu W, et al. Ultrasonic stimulation of the brain to enhance the release of dopamine – A potential novel treatment for Parkinson’s disease. Ultrasonics Sonochemistry. 2020;63:104955.
  232. Yamaguchi T, Nakano M, Sasanuma J, Takasaki M, Maki F, Hino S, et al. Cavitation with low-energy sonication during focused ultrasound thalamotomy for a patient with tremor-dominant Parkinson's disease: a potential risk. Acta Neurochir (Wien). 2023;165(5):1195-200.
  233. Yang T, Chen J, Yan B, Zhou D. Transcranial ultrasound stimulation: a possible therapeutic approach to epilepsy. Med Hypotheses. 2011;76(3):381-3.
  234. Yuan D, Tian H, Zhou Y, Wu J, Sun T, Xiao Z, et al. Acupoint-brain (acubrain) mapping: Common and distinct cortical language regions activated by focused ultrasound stimulation on two language-relevant acupoints. Brain Lang. 2021;215:104920.
  235. Yuan Y, Zhao Z, Wang Z, Wang X, Yan J, Li X. The Effect of Low-Intensity Transcranial Ultrasound Stimulation on Behavior in a Mouse Model of Parkinson's Disease Induced by MPTP. IEEE Trans Neural Syst Rehabil Eng. 2020;28(4):1017-21.
  236. Yuen J, Goyal A, Kaufmann TJ, Jackson LM, Miller KJ, Klassen BT, et al. Comparison of the impact of skull density ratio with alternative skull metrics on magnetic resonance-guided focused ultrasound thalamotomy for tremor. J Neurosurg. 2023;138(1):50-7.
  237. Zesiewicz T, Vega J, Gooch C, Ghanekar S, Huang Y, Bezchlibnyk Y, et al. Therapies, Research Funding, and Racial Diversity in Essential Tremor: A Systematic Review of the Literature. Mov Disord Clin Pract. 2022;9(6):728-34.
  238. Zhang M, Tang R, Lang, He J, editors. Construction of a focused ultrasound neuromodulation system for the treatment of epileptic seizure. 2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS); 2019 21-24 Nov. 2019.
  239. ZHAO Guang-rui CY-f, YIN Shao-ya. Advances in the surgical treatment of Parkinson's disease. Chinese Journal of Contemporary Neurology and Neurosurgery. 2022;22(4):253-62.
  240. Zhao L, Feng Y, Shi A, Zhang L, Guo S, Wan M. Neuroprotective Effect of Low-Intensity Pulsed Ultrasound Against MPP+-Induced Neurotoxicity in PC12 Cells: Involvement of K2P Channels and Stretch-Activated Ion Channels. Ultrasound in Medicine and Biology. 2017;43(9):1986-99.
  241. Zhou H, Niu L, Xia X, Lin Z, Liu X, Su M, et al. Wearable Ultrasound Improves Motor Function in an MPTP Mouse Model of Parkinson's Disease. IEEE Trans Biomed Eng. 2019;66(11):3006-13.
  242. Zhu S, Meng B, Jiang J, Wang X, Luo N, Liu N, et al. The Updated Role of Transcranial Ultrasound Neuromodulation in Ischemic Stroke: From Clinical and Basic Research. Frontiers in Cellular Neuroscience. 2022;16.
  243. Cain JA, Spivak NM, Coetzee JP, Crone JS, Johnson MA, Lutkenhoff ES, et al. Ultrasonic Deep Brain Neuromodulation in Acute Disorders of Consciousness: A Proof-of-Concept. Brain Sci. 2022;12(4).
  244. Ashar H, Ranjan A. Immunomodulation and targeted drug delivery with high intensity focused ultrasound (HIFU): Principles and mechanisms. Pharmacol Ther. 2023;244:108393.
  245. Han J, Zhang Y, Wang X, Zhang G, Yu Z, Wang C, et al. Ultrasound-mediated piezoelectric nanoparticle modulation of intrinsic cardiac autonomic nervous system for rate control in atrial fibrillation. Biomaterials Science. 2023;11(2):655-65.
  246. Badadhe JD, Roh H, Lee BC, Kim JH, Im M. Ultrasound stimulation for non-invasive visual prostheses. Front Cell Neurosci. 2022;16:971148.
  247. Zhang Q, Mao J, Zhang Y, Lu M, Li R, Liu X, et al. Multiple-Focus Patterns of Sparse Random Array Using Particle Swarm Optimization for Ultrasound Surgery. IEEE Trans Ultrason Ferroelectr Freq Control. 2022;69(2):565-79.
  248. Krentel H, Schäfer S, Salehin D, Keckstein J, Oral E, Exacoustos C, et al. Master in Endometriosis: What is needed to become an expert? 2022.
  249. Wileczek A, Polewczyk A, Kluk M, Kutarski A, Stec S. Ultrasound-guided imaging for vagus nerve stimulation to facilitate cardioneuroablation for the treatment of functional advanced atrioventricular block. Indian Pacing Electrophysiol J. 2021;21(6):403-6.
  250. Haribabu S, Sharif F, Zafar H. Recent trends in renal denervation devices for resistant hypertension treatment. Ir J Med Sci. 2021;190(3):971-9.
  251. Mahfoud F, Schlaich MP, Lobo MD. Device Therapy of Hypertension. Circulation Research. 2021;128(7):1080-99.
  252. Lauder L, Azizi M, Kirtane AJ, Böhm M, Mahfoud F. Device-based therapies for arterial hypertension. Nature Reviews Cardiology. 2020;17(10):614-28.
  253. Voora R, Hinderliter AL. Modulation of Sympathetic Overactivity to Treat Resistant Hypertension. Curr Hypertens Rep. 2018;20(11):92.
  254. Charles EJ, Tian Y, Zhang A, Wu D, Mehaffey JH, Gigliotti JC, et al. Pulsed ultrasound attenuates the hyperglycemic exacerbation of myocardial ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2021;161(4):e297-e306.
  255. Eggermont J. Brain Oscillations, Synchrony, and Plasticity: Basic Principles and Application to Auditory-Related Disorders2021.
  256. Costa G, Serra M, Marongiu J, Morelli M, Simola N. Influence of dopamine transmission in the medial prefrontal cortex and dorsal striatum on the emission of 50-kHz ultrasonic vocalizations in rats treated with amphetamine: Effects on drug-stimulated and conditioned calls. Prog Neuropsychopharmacol Biol Psychiatry. 2020;97:109797.
  257. Airan R. Neuromodulation with nanoparticles. Science. 2017;357(6350):465.
  258. Szablowski JO, Lee-Gosselin A, Lue B, Malounda D, Shapiro MG. Acoustically targeted chemogenetics for the non-invasive control of neural circuits. Nature Biomedical Engineering. 2018;2(7):475-84.
  259. Vandersteen DR. Editorial Comment. J Urol. 2015;194(6):1726-7.
  260. Saab CY. Chapter 7 - Discussion. In: Saab CY, editor. Chronic Pain and Brain Abnormalities. San Diego: Academic Press; 2014. p. 127-41.
  261. Stenson K, Brownrigg JRW, Mohamed M. Occurrence and Multiple Recurrence of Severe Vasospasm of the Upper Extremity Following Thorascopic Sympathectomy for Hyperhidrosis. European Journal of Vascular and Endovascular Surgery. 2011;41(2):264-6.
  262. Ganio E, Masin A, Ratto C, Altomare DF, Ripetti V, Clerico G, et al. Short-term sacral nerve stimulation for functional anorectal and urinary disturbances: results in 40 patients: evaluation of a new option for anorectal functional disorders. Dis Colon Rectum. 2001;44(9):1261-7.
  263. Fujikado T, Kawasaki Y, Fujii J, Taniguchi N, Okada M, Suzuki A, et al. The effect of nitric oxide synthase inhibitor on form-deprivation myopia. Curr Eye Res. 1997;16(10):992-6.
  264. Wöllner J, Krebs J, Pannek J. Neuro-Urology in Spinal Cord Injury. In: Weidner N, Rupp R, Tansey KE, editors. Neurological Aspects of Spinal Cord Injury. Cham: Springer International Publishing; 2017. p. 363-96.
  265. Abd-Elsayed A, Mitry C, Mitry J, Nadherny W. Anesthetic Considerations and Perioperative Management of Sacral Neuromodulators: Literature Review and Initial Recommendations. Neuromodulation. 2020;23(8):1117-20.
  266. Agarwal M. Dysfunctional Voiding in Women. 2021. p. 35-51.
  267. Ahmad I, Krishna NS, Small DR, Conn IG. Aetiology and management of acute female urinary retention. British Journal of Medical and Surgical Urology. 2009;2(1):27-33.
  268. Bartolo DC, Paterson HM. Anal incontinence. Best Pract Res Clin Gastroenterol. 2009;23(4):505-15.
  269. Batavia J, Combs A. Non-invasive Testing and Its Role in Diagnosis and Management of Children With Voiding Dysfunction. Current Bladder Dysfunction Reports. 2018;13.
  270. Buhmann H, Nocito A. [Update on fecal incontinence]. Praxis (Bern 1994). 2014;103(22):1313-21.
  271. Cai J, Nash WT, Okusa MD. Ultrasound for the treatment of acute kidney injury and other inflammatory conditions: a promising path toward noninvasive neuroimmune regulation. Am J Physiol Renal Physiol. 2020;319(1):F125-f38.
  272. de la Portilla F, Rada R, Vega J, González CA, Cisneros N, Maldonado VH. Evaluation of the use of posterior tibial nerve stimulation for the treatment of fecal incontinence: preliminary results of a prospective study. Dis Colon Rectum. 2009;52(8):1427-33.
  273. Dimitriadis K, Tsioufis C. Renal denervation vascular effects: An "insider's" view. Hellenic J Cardiol. 2020;61(3):197-8.
  274. Dörflinger A, Monga A. Voiding dysfunction. Curr Opin Obstet Gynecol. 2001;13(5):507-12.
  275. Douglas JM, Smith LE. Recent concepts in fecal incontinence. Curr Womens Health Rep. 2001;1(1):67-71.
  276. Doumouchtsis SK, Jeffery S, Fynes M. Female voiding dysfunction. Obstet Gynecol Surv. 2008;63(8):519-26.
  277. Dudding TC, Parés D, Vaizey CJ, Kamm MA. Predictive factors for successful sacral nerve stimulation in the treatment of faecal incontinence: a 10-year cohort analysis. Colorectal Dis. 2008;10(3):249-56.
  278. Elneil S. Urinary retention in women and sacral neuromodulation. Int Urogynecol J. 2010;21 Suppl 2:S475-83.
  279. Faucheron JL. [Anal incontinence]. Presse Med. 2008;37(10):1447-62.
  280. Felt-Bersma RJ, Szojda MM, Mulder CJ. Temperature-controlled radiofrequency energy (SECCA) to the anal canal for the treatment of faecal incontinence offers moderate improvement. Eur J Gastroenterol Hepatol. 2007;19(7):575-80.
  281. Findlay JM, Yeung JM, Robinson R, Greaves H, Maxwell-Armstrong C. Peripheral neuromodulation via posterior tibial nerve stimulation - a potential treatment for faecal incontinence? Ann R Coll Surg Engl. 2010;92(5):385-90.
  282. Gobbi C, Digesu GA, Khullar V, El Neil S, Caccia G, Zecca C. Percutaneous posterior tibial nerve stimulation as an effective treatment of refractory lower urinary tract symptoms in patients with multiple sclerosis: preliminary data from a multicentre, prospective, open label trial. Mult Scler. 2011;17(12):1514-9.
  283. Jiménez-Toscano M, Vega D, Fernandez-Cebrián JM, Valle Martín B, Jiménez-Almonacid P, Rueda Orgaz JA. Efficacy and quality of life after transcutaneous posterior tibial neuromodulation for faecal incontinence. Colorectal Dis. 2015;17(8):718-23.
  284. Kakizaki H, Kita M, Watanabe M, Wada N. Pathophysiological and Therapeutic Considerations for Non-Neurogenic Lower Urinary Tract Dysfunction in Children. Low Urin Tract Symptoms. 2016;8(2):75-85.
  285. Karmarkar R, Abtahi B, Saber-Khalaf M, Gonzales G, Elneil S. Gynaecological pathology in women with Fowler's syndrome. Eur J Obstet Gynecol Reprod Biol. 2015;194:54-7.
  286. Kessler TM, Wöllner J, Kozomara M, Mordasini L, Mehnert U. [Sacral neuromodulation for neurogenic bladder dysfunction]. Urologe A. 2012;51(2):179-83.
  287. Kirss J, Pinta T, Rautio T, Varpe P, Kairaluoma M, Hyöty M, et al. Impact of sphincter lesions and delayed sphincter repair on sacral neuromodulation treatment outcomes for faecal incontinence: results from a Finnish national cohort study. International Journal of Colorectal Disease. 2018;33(12):1709-14.
  288. Knowles CH, Dinning P, Scott SM, Swash M, de Wachter S. New concepts in the pathophysiology of fecal incontinence. Annals of Laparoscopic and Endoscopic Surgery. 2022;7.
  289. Kocjancic E, Chung E, Garzon JA, Haylen B, Iacovelli V, Jaunarena J, et al. International Continence Society (ICS) report on the terminology for sexual health in men with lower urinary tract (LUT) and pelvic floor (PF) dysfunction. Neurourol Urodyn. 2022;41(1):140-65.
  290. Lucas S, Nadia F, Hélène Pillant-Le M, Élise P, Christian T, Paul B, et al. Comment explorer une incontinence anale ? D’abord avec le doigt… mais encore ? Hépato-Gastro & Oncologie Digestive. 2020;27(2):172-84.
  291. Marinkovic SP, Gillen LM, Marinkovic CM. Neuromodulation for Overactive Bladder Symptoms in Women Utilizing Either Motor or Sensory/Motor Provocation With a Minimum Nine-Year Follow-Up. Neuromodulation. 2015;18(6):517-21; discussion 21.
  292. McCullough MC, Decker S, Ford J, Downes K, Hilbelink D, Ordorica R, et al. Third sacral foramina morphometry for sacral neuromodulation. Female Pelvic Med Reconstr Surg. 2013;19(1):23-30.
  293. Melenhorst J, Koch SM, Uludag Ö, Van Gemert WG, Baeten CG. Sacral neuromodulation in patients with faecal incontinence: results of the first 100 permanent implantations. Colorectal Disease. 2007;9(8):725-30.
  294. Nadia F, Jérôme L, Hélène Pillant-Le M, Frédéric G, Véronique V, Denis S, et al. La neuromodulation sacrée dans l’incontinence fécale : le changement, c’est maintenant…. Hépato-Gastro & Oncologie Digestive. 2016;23(9):861-8.
  295. Oliveira L, Hagerman G, Torres ML, Lumi CM, Siachoque JAC, Reyes JC, et al. Sacral neuromodulation for fecal incontinence in Latin America: initial results of a multicenter study. Tech Coloproctol. 2019;23(6):545-50.
  296. Oom DM, Steensma AB, van Lanschot JJ, Schouten WR. Is sacral neuromodulation for fecal incontinence worthwhile in patients with associated pelvic floor injury? Dis Colon Rectum. 2010;53(4):422-7.
  297. Panicker JN. Neurogenic Bladder: Epidemiology, Diagnosis, and Management. Semin Neurol. 2020;40(5):569-79.
  298. Patrick A, Isabelle E. Prise en charge de l’incontinence anale de l’adulte en 2016. Hépato-Gastro & Oncologie Digestive. 2016;23(6):527-37.
  299. Petrushin A.L. PAV. Postpartum anal incontinence. Obstetrics, Gynecology and Reproduction. 2019;13(1):50-62.
  300. Peyronnet B, Rigole H, Damphousse M, Manunta A. Prise en charge de l’hyperactivité vésicale chez la femme. Progrès en Urologie. 2015;25(14):877-83.
  301. Prapasrivorakul S, Gosselink MP, Gorissen KJ, Fourie S, Hompes R, Jones OM, et al. Sacral neuromodulation for faecal incontinence: is the outcome compromised in patients with high-grade internal rectal prolapse? Int J Colorectal Dis. 2015;30(2):229-34.
  302. Quezada Y, Whiteside JL, Rice T, Karram M, Rafferty JF, Paquette IM. Does preoperative anal physiology testing or ultrasonography predict clinical outcome with sacral neuromodulation for fecal incontinence? Int Urogynecol J. 2015;26(11):1613-7.
  303. Rao SSC, Tetangco EP. Anorectal Disorders: An Update. J Clin Gastroenterol. 2020;54(7):606-13.
  304. Rydningen MB, Dehli T, Wilsgaard T, Lindsetmo RO, Kumle M, Stedenfeldt M, et al. Sacral neuromodulation for faecal incontinence following obstetric sphincter injury - outcome of percutaneous nerve evaluation. Colorectal Dis. 2017;19(3):274-82.
  305. Sanagapalli S, Harrington S, Zarate-Lopez N, Emmanuel A. Posterior Tibial Nerve Stimulation for the Treatment of Fecal Incontinence Following Obstetric Anal Sphincter Injury. Neuromodulation. 2018;21(7):688-93.
  306. Shabataev V, Saadat SH, Elterman DS. Management of erectile dysfunction and LUTS/incontinence: the two most common, long-term side effects of prostate cancer treatment. Can J Urol. 2020;27(27 Suppl 1):17-24.
  307. Sharma A, Yan Y, Rao S. Fecal incontinence. 2020. p. 493-504.
  308. Skobejko-Włodarska L. [Non-neurogenic lower urinary tract dysfunction]. Pol Merkur Lekarski. 2008;24 Suppl 4:131-7.
  309. Sripathi V, Mitra A. Management of Neurogenic Bladder. Indian J Pediatr. 2017;84(7):545-54.
  310. Suresh N, Karanth R, Jayne DG, Del Galdo F. Fecal incontinence and scleroderma: Pathogenesis and unmet needs. Best Pract Res Clin Rheumatol. 2021;35(3):101686.
  311. Thoua NM, Schizas A, Forbes A, Denton CP, Emmanuel AV. Internal anal sphincter atrophy in patients with systemic sclerosis. Rheumatology (Oxford). 2011;50(9):1596-602.
  312. Vallet C, Parc Y, Lupinacci R, Shields C, Parc R, Tiret E. Sacral nerve stimulation for faecal incontinence: response rate, satisfaction and the value of preoperative investigation in patient selection. Colorectal Dis. 2010;12(3):247-53.
  313. Williams J, Hashim H, editors. New developments in the diagnosis and management of overactive bladder2013.
  314. Yang E, Yang SH, Huang WC, Yeh SC, Yang JM. Association of Baseline Pelvic Floor Muscle Activities With Sexual and Urinary Functions In Female Stress Urinary Incontinence. J Sex Med. 2021;18(10):1698-704.
  315. Maher RM, Caulfield B. A novel externally applied neuromuscular stimulator for the treatment of stress urinary incontinence in women--”a pilot study. Neuromodulation. 2013;16(6):590-4; discussion 4.
  316. Weintraub D, Elias WJ. The emerging role of transcranial magnetic resonance imaging-guided focused ultrasound in functional neurosurgery. Mov Disord. 2017;32(1):20-7.
  317. Davidson B, Hamani C, Rabin JS, Meng Y, Richter MA, Giacobbe P, et al. Magnetic Resonance-Guided Focused Ultrasound Capsulotomy for Musical Obsessions. Biol Psychiatry. 2021;90(10):e49-e50.
  318. Elias WJ, Huss D, Voss T, Loomba J, Khaled M, Zadicario E, et al. A pilot study of focused ultrasound thalamotomy for essential tremor. N Engl J Med. 2013;369(7):640-8.
  319. Lev-Tov L, Barbosa DAN, Ghanouni P, Halpern CH, Buch VP. Focused ultrasound for functional neurosurgery. J Neurooncol. 2022;156(1):17-22.
  320. Pooja NA, Pahuja SK, Veer K. Significance of MRI Guided Focused Ultrasound Thalamotomy for Parkinson's Disease: A Review. Curr Med Imaging. 2021;17(6):714-9.
  321. Settell ML, Skubal AC, Chen RCH, Kasole M, Knudsen BE, Nicolai EN, et al. In vivo Visualization of Pig Vagus Nerve “Vagotopy” Using Ultrasound. Frontiers in Neuroscience. 2021;15.
  322. Akhtar K, Hirschstein Z, Stefanelli A, Iannilli E, Srinivasan A, Barenboim L, et al. Non-invasive peripheral focused ultrasound neuromodulation of the celiac plexus ameliorates symptoms in a rat model of inflammatory bowel disease. Exp Physiol. 2021;106(4):1038-60.
  323. Aurup C, Kamimura HAS, Konofagou EE. High-Resolution Focused Ultrasound Neuromodulation Induces Limb-Specific Motor Responses in Mice in Vivo. Ultrasound Med Biol. 2021;47(4):998-1013.
  324. Bachu VS, Kedda J, Suk I, Green JJ, Tyler B. High-Intensity Focused Ultrasound: A Review of Mechanisms and Clinical Applications. Ann Biomed Eng. 2021;49(9):1975-91.
  325. Cafarelli A, Marino A, Vannozzi L, Puigmartí-Luis J, Pané S, Ciofani G, et al. Piezoelectric Nanomaterials Activated by Ultrasound: The Pathway from Discovery to Future Clinical Adoption. ACS Nano. 2021;15(7):11066-86.
  326. Chen KT, Wei KC, Liu HL. Focused Ultrasound Combined with Microbubbles in Central Nervous System Applications. Pharmaceutics. 2021;13(7).
  327. Chen Q, Chen G, He X, Chong T, Zhou J, Zhang J, et al. Application of ultrasound during electrode implantation for sacral neuromodulation in patients with neurogenic bladder secondary to spinal cord disease: a retrospective study. Int Urol Nephrol. 2021;53(7):1325-30.
  328. Chen X, Wang D, Zhang L, Yao H, Zhu H, Zhao N, et al. Neuroprotective Effect of Low-Intensity Pulsed Ultrasound on the Mouse MPTP/MPP(+) Model of Dopaminergic Neuron Injury. Ultrasound Med Biol. 2021;47(8):2321-30.
  329. Chen Y, Li Y, Du M, Yu J, Gao F, Yuan Z, et al. Ultrasound Neuromodulation: Integrating Medicine and Engineering for Neurological Disease Treatment. BIO Integration. 2021;2(4):169-79.
  330. Choi EH, Nwakalor C, Brown NJ, Lee J, Oh MY, Yang IH. Therapeutic potential of neuromodulation for demyelinating diseases. Neural Regen Res. 2021;16(2):214-7.
  331. Collins MN, Legon W, Mesce KA. The Inhibitory Thermal Effects of Focused Ultrasound on an Identified, Single Motoneuron. eNeuro. 2021;8(2).
  332. Crawford L, Mueller D, Mathews L. Anesthetic Considerations for Functional Neurosurgery. Anesthesiol Clin. 2021;39(1):227-43.
  333. Durham PG, Dayton PA. Applications of sub-micron low-boiling point phase change contrast agents for ultrasound imaging and therapy. Current Opinion in Colloid & Interface Science. 2021;56:101498.
  334. Goudman L, De Smedt A, Huygens R, Noppen M, Vanschoenwinkel M, Hatem SM, et al. Hospital at Home for Intrathecal Pump Refills: A Prospective Effectiveness, Safety and Feasibility Study. J Clin Med. 2021;10(22).
  335. Gupta N, Pandey S. Treatment of focal hand dystonia: current status. Neurol Sci. 2021;42(9):3561-84.
  336. Ho Y-J, Huang C-C, Fan C-H, Liu H-L, Yeh C-K. Ultrasonic technologies in imaging and drug delivery. Cellular and Molecular Life Sciences. 2021;78(17):6119-41.
  337. Holland MT, Trapp NT, Greenlee JDW. Editorial: Invasive Treatments for Obsessive Compulsive Disorder. Front Psychiatry. 2021;12:764003.
  338. Hou X, Qiu Z, Xian Q, Kala S, Jing J, Wong KF, et al. Precise Ultrasound Neuromodulation in a Deep Brain Region Using Nano Gas Vesicles as Actuators. Advanced Science. 2021;8(21):2101934.
  339. Hwang BY, Mampre D, Ahmed AK, Suk I, Anderson WS, Manbachi A, et al. Ultrasound in Traumatic Spinal Cord Injury: A Wide-Open Field. Neurosurgery. 2021;89(3):372-82.
  340. Kim S, Jo Y, Kook G, Pasquinelli C, Kim H, Kim K, et al. Transcranial focused ultrasound stimulation with high spatial resolution. Brain Stimulation. 2021;14(2):290-300.
  341. Kim T, Park C, Chhatbar PY, Feld J, Mac Grory B, Nam CS, et al. Effect of Low Intensity Transcranial Ultrasound Stimulation on Neuromodulation in Animals and Humans: An Updated Systematic Review. Frontiers in Neuroscience. 2021;15.
  342. Kusunose J, Rodriguez W, Luo H, Manuel T, Phipps MA, Grissom W, et al., editors. Patient-Specific Stereotactic Frame for Transcranial Ultrasound Therapy. 2021 IEEE International Ultrasonics Symposium (IUS); 2021 11-16 Sept. 2021.
  343. Lea-Banks H, Meng Y, Wu SK, Belhadjhamida R, Hamani C, Hynynen K. Ultrasound-sensitive nanodroplets achieve targeted neuromodulation. J Control Release. 2021;332:30-9.
  344. Lennon JC, Hassan I. Magnetic resonance-guided focused ultrasound for Parkinson's disease since ExAblate, 2016-2019: a systematic review. Neurol Sci. 2021;42(2):553-63.
  345. Leung SA, Moore D, Webb TD, Snell J, Ghanouni P, Butts Pauly K. Transcranial focused ultrasound phase correction using the hybrid angular spectrum method. Scientific Reports. 2021;11(1):6532.
  346. LI Qian; CX, WANG Dong. Research progresses of neuromodulation of low-intensity focused ultrasound. 2021(7):1078-81.
  347. Liao D, Hsiao M-Y, Xiang G, Zhong P. Optimal pulse length of insonification for Piezo1 activation and intracellular calcium response. Scientific Reports. 2021;11(1):709.
  348. Lin Z, Bian T, Zhou W, Wang Y, Huang X, Zou J, et al. Modulation of Neuronal Excitability by Low- Intensity Ultrasound in Two Principal Neurons of Rat Anteroventral Cochlear Nucleus. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68(5):1752-61.
  349. Liu C, Yu K, Niu X, He B. Transcranial Focused Ultrasound Enhances Sensory Discrimination Capability through Somatosensory Cortical Excitation. Ultrasound Med Biol. 2021;47(5):1356-66.
  350. Liu W, Wu D, Zhu C, editors. Fabrication and Spatial Focusing of a Stretchable Two-dimensional Ultrasonic Array Based on Row and Column Electrodes. 2021 IEEE International Ultrasonics Symposium (IUS); 2021 11-16 Sept. 2021.
  351. Liu X, Qiu F, Hou L, Wang X. Review of Noninvasive or Minimally Invasive Deep Brain Stimulation. Front Behav Neurosci. 2021;15:820017.
  352. Lowe KA, Zinke W, Phipps MA, Cosman J, Maddox M, Schall JD, et al. Visuomotor Transformations Are Modulated by Focused Ultrasound over Frontal Eye Field. Ultrasound in Medicine & Biology. 2021;47(3):679-92.
  353. Manoharan D, Sudhakaran D, Goyal A, Srivastava DN, Ansari MT. Clinico-radiological review of peripheral entrapment neuropathies - Part 2 Lower limb. Eur J Radiol. 2021;135:109482.
  354. McCune EP, Lee SA, Konofagou EE, editors. Tissue Temperature Effects on Cavitation During Focused Ultrasound Nerve Modulation. 2021 IEEE International Ultrasonics Symposium (IUS); 2021 11-16 Sept. 2021.
  355. Meng Y, Hynynen K, Lipsman N. Applications of focused ultrasound in the brain: from thermoablation to drug delivery. Nature Reviews Neurology. 2021;17(1):7-22.
  356. Meng Y, Pople CB, Lea-Banks H, Hynynen K, Lipsman N, Hamani C. Focused ultrasound neuromodulation. Int Rev Neurobiol. 2021;159:221-40.
  357. Park M, Hoang GM, Nguyen T, Lee E, Jung HJ, Choe Y, et al. Effects of transcranial ultrasound stimulation pulsed at 40 Hz on Aβ plaques and brain rhythms in 5×FAD mice. Translational Neurodegeneration. 2021;10(1):48.
  358. Patricia De A, Hermes K, Eduardo C, editors. Numerical simulation of transcranial focused ultrasound based on head CT images. ProcSPIE; 2021.
  359. Peng D, Tong W, Collins DJ, Ibbotson MR, Prawer S, Stamp M. Mechanisms and Applications of Neuromodulation Using Surface Acoustic Waves—A Mini-Review. Frontiers in Neuroscience. 2021;15.
  360. Qi X, Lyu K, Meng L, Li C, Zhang H, Niu L, et al. Low-Intensity Ultrasound Causes Direct Excitation of Auditory Cortical Neurons. Neural Plast. 2021;2021:8855055.
  361. Qiu W, Bouakaz A, Konofagou EE, Zheng H. Ultrasound for the Brain: A Review of Physical and Engineering Principles, and Clinical Applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2021;68(1):6-20.
  362. Rao SSC, Xiang X, Sharma A, Patcharatrakul T, Yan Y, Parr R, et al. Translumbosacral Neuromodulation Therapy for Fecal Incontinence: A Randomized Frequency Response Trial. Am J Gastroenterol. 2021;116(1):162-70.
  363. Sammartino F, Snell J, Eames M, Krishna V. Thermal Neuromodulation With Focused Ultrasound: Implications for the Technique of Subthreshold Testing. Neurosurgery. 2021;89(4):610-6.
  364. Schafer ME, Spivak NM, Korb AS, Bystritsky A. Design, Development, and Operation of a Low-Intensity Focused Ultrasound Pulsation (LIFUP) System for Clinical Use. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2021;68(1):54-64.
  365. Shen X, Song Z, Xu E, Zhou J, Yan F. Sensitization of nerve cells to ultrasound stimulation through Piezo1-targeted microbubbles. Ultrasonics Sonochemistry. 2021;73:105494.
  366. Shi L, Jiang Y, Fernandez FR, Chen G, Lan L, Man H-Y, et al. Non-genetic photoacoustic stimulation of single neurons by a tapered fiber optoacoustic emitter. Light: Science & Applications. 2021;10(1):143.
  367. Tamayo-Elizalde M, Kayal C, Ye H, Jérusalem A. Single cell electrophysiological alterations under dynamic loading at ultrasonic frequencies. Brain Multiphysics. 2021;2:100031.
  368. Uddin SMZ, Komatsu DE, Motyka T, Petterson S. Low-Intensity Continuous Ultrasound Therapies—A Systematic Review of Current State-of-the-Art and Future Perspectives. J Clin Med. 2021;10(12).
  369. Ventre DM, Cluff A, Gagnon C, Diaz Vera D, Koppes RA, Koppes AN. The effects of low intensity focused ultrasonic stimulation on dorsal root ganglion neurons and Schwann cells in vitro. J Neurosci Res. 2021;99(1):374-91.
  370. Walker MR, Zhong J, Waspe AC, Piorkowska K, Nguyen LN, Anastakis DJ, et al. Peripheral Nerve Focused Ultrasound Lesioning-Visualization and Assessment Using Diffusion Weighted Imaging. Front Neurol. 2021;12:673060.
  371. Wang J, Li G, Deng L, Mamtilahun M, Jiang L, Qiu W, et al. Transcranial Focused Ultrasound Stimulation Improves Neurorehabilitation after Middle Cerebral Artery Occlusion in Mice. Aging Dis. 2021;12(1):50-60.
  372. Wang Y, Niu L, Meng W, Lin Z, Zou J, Bian T, et al. Ultrasound Stimulation of Periaqueductal Gray Induces Defensive Behaviors. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68(1):38-45.
  373. Wie C, Gupta R, Maloney J, Pew S, Freeman J, Strand N. Interventional Modalities to Treat Complex Regional Pain Syndrome. Curr Pain Headache Rep. 2021;25(2):10.
  374. Xian Q, Qiu Z, Kala S, Wong KF, Guo J, Sun L. Behavioral and Functional Assessment of Ultrasound Neuromodulation on Caenorhabditis Elegans. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68(6):2150-4.
  375. Yang P-F, Phipps MA, Jonathan S, Newton AT, Byun N, Gore JC, et al. Bidirectional and state-dependent modulation of brain activity by transcranial focused ultrasound in non-human primates. Brain Stimulation. 2021;14(2):261-72.
  376. Yang Y, Pacia CP, Ye D, Zhu L, Baek H, Yue Y, et al. Sonothermogenetics for noninvasive and cell-type specific deep brain neuromodulation. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation. 2021;14(4):790-800.
  377. Yu K, Liu C, Niu X, He B. Transcranial Focused Ultrasound Neuromodulation of Voluntary Movement-Related Cortical Activity in Humans. IEEE Trans Biomed Eng. 2021;68(6):1923-31.
  378. Yu K, Niu X, Krook-Magnuson E, He B. Intrinsic functional neuron-type selectivity of transcranial focused ultrasound neuromodulation. Nature Communications. 2021;12(1):2519.
  379. Yuan Y, Zhang K, Zhang Y, Yan J, Wang Z, Wang X, et al. The Effect of Low-Intensity Transcranial Ultrasound Stimulation on Neural Oscillation and Hemodynamics in the Mouse Visual Cortex Depends on Anesthesia Level and Ultrasound Intensity. IEEE Trans Biomed Eng. 2021;68(5):1619-26.
  380. Zhang H, Zhang Y, Xu M, Song X, Chen S, Jian X, et al. The Effects of the Structural and Acoustic Parameters of the Skull Model on Transcranial Focused Ultrasound. Sensors [Internet]. 2021; 21(17).
  381. Zhou H, Meng L, Xia X, Lin Z, Zhou W, Pang N, et al. Transcranial Ultrasound Stimulation Suppresses Neuroinflammation in a Chronic Mouse Model of Parkinson's Disease. IEEE Transactions on Biomedical Engineering. 2021;68(11):3375-87.
  382. Zielińska A, Włodarczyk M, Makaro A, Sałaga M, Fichna J. Management of pain in colorectal cancer patients. Crit Rev Oncol Hematol. 2021;157:103122.
  383. Andrés D, Jiménez N, Benlloch JM, Camarena F. Numerical Study of Acoustic Holograms for Deep-Brain Targeting through the Temporal Bone Window. Ultrasound in Medicine & Biology. 2022;48(5):872-86.
  384. available] Nan. IUS 2022 - IEEE International Ultrasonics Symposium. IEEE International Ultrasonics Symposium, IUS; 2022.
  385. available] Nan. 27th Brazilian Congress on Biomedical Engineering, CBEB 2020. IFMBE Proceedings 83. 2022.
  386. Baek H, Lockwood D, Mason EJ, Obusez E, Poturalski M, Rammo R, et al. Clinical Intervention Using Focused Ultrasound (FUS) Stimulation of the Brain in Diverse Neurological Disorders. Frontiers in Neurology. 2022;13.
  387. Bhattacharya A, Mrudula K, Sreepada SS, Sathyaprabha TN, Pal PK, Chen R, et al. An Overview of Noninvasive Brain Stimulation: Basic Principles and Clinical Applications. Can J Neurol Sci. 2022;49(4):479-92.
  388. Bravo BSF, de Melo Carvalho R, Penedo L, de Bastos JT, Calomeni Elias M, Cotofana S, et al. Applied anatomy of the layers and soft tissues of the forehead during minimally-invasive aesthetic procedures. J Cosmet Dermatol. 2022;21(11):5864-71.
  389. Brinker ST, Balchandani P, Seifert AC, Kim H-J, Yoon K. Feasibility of Upper Cranial Nerve Sonication in Human Application via Neuronavigated Single-Element Pulsed Focused Ultrasound. Ultrasound in Medicine & Biology. 2022;48(6):1045-57.
  390. Chen X, Xu L, Li Z. Autonomic Neural Circuit and Intervention for Comorbidity Anxiety and Cardiovascular Disease. Frontiers in Physiology. 2022;13.
  391. Cheng Z, Wang C, Wei B, Gan W, Zhou Q, Cui M. High resolution ultrasonic neural modulation observed via in vivo two-photon calcium imaging. Brain Stimulation. 2022;15(1):190-6.
  392. Chu PC, Yu HY, Lee CC, Fisher R, Liu HL. Pulsed-Focused Ultrasound Provides Long-Term Suppression of Epileptiform Bursts in the Kainic Acid-Induced Epilepsy Rat Model. Neurotherapeutics. 2022;19(4):1368-80.
  393. Collins MN, Mesce KA. A review of the bioeffects of low-intensity focused ultrasound and the benefits of a cellular approach. Front Physiol. 2022;13:1047324.
  394. Cotero V, Graf J, Miwa H, Hirschstein Z, Qanud K, Huerta TS, et al. Stimulation of the hepatoportal nerve plexus with focused ultrasound restores glucose homoeostasis in diabetic mice, rats and swine. Nature Biomedical Engineering. 2022;6(6):683-705.
  395. Czura CJ, Bikson M, Charvet L, Chen JDZ, Franke M, Fudim M, et al. Neuromodulation Strategies to Reduce Inflammation and Improve Lung Complications in COVID-19 Patients. Front Neurol. 2022;13:897124.
  396. El Hassan RH, Lawand NB, Al-Chaer ED, Khraiche ML. Frequency dependent, reversible focused ultrasound suppression of evoked potentials in the reflex arc in an anesthetized animal. J Peripher Nerv Syst. 2022;27(4):271-82.
  397. Fan CH, Ho YJ, Lin CW, Wu N, Chiang PH, Yeh CK. State-of-the-art of ultrasound-triggered drug delivery from ultrasound-responsive drug carriers. Expert Opin Drug Deliv. 2022;19(8):997-1009.
  398. Felix C, Folloni D, Chen H, Sallet J, Jerusalem A. White matter tract transcranial ultrasound stimulation, a computational study. Computers in Biology and Medicine. 2022;140:105094.
  399. Ferreira-Silva N, Ferreira-Dos-Santos G, Gupta S, Hunt CL, Eldrige JS, Pingree MJ, et al. A case for ultrasound-guided peripheral nerve stimulation in intractable anterior cutaneous nerve entrapment syndrome. Pain Manag. 2022;12(7):813-9.
  400. Furlan JC, Pakosh M, Craven BC, Popovic MR. Insights on the Potential Mechanisms of Action of Functional Electrical Stimulation Therapy in Combination With Task-Specific Training: A Scoping Review. Neuromodulation. 2022;25(8):1280-8.
  401. Garg K, Ranjan M, Krishna V, Singh M, Rezai A. A scientometric analysis of the 100 most cited articles on magnetic resonance guided focused ultrasound. Front Hum Neurosci. 2022;16:981571.
  402. Ghorayeb SR, Hirsch B. PSpice modeling of cervical and site-focused vagus nerve ultrasonic stimulation for reduced tumor necrosis factor-α production. Scientific Reports. 2022;12(1):21470.
  403. Gorick CM, Breza VR, Nowak KM, Cheng VWT, Fisher DG, Debski AC, et al. Applications of focused ultrasound-mediated blood-brain barrier opening. Adv Drug Deliv Rev. 2022;191:114583.
  404. He J, Wu J, Zhu Y, Chen Y, Yuan M, Zeng L, et al. Multitarget Transcranial Ultrasound Therapy in Small Animals Based on Phase-Only Acoustic Holographic Lens. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2022;69(2):662-71.
  405. Ilfeld BM, Finneran Iv JJ, Dalstrom D, Wallace AM, Abdullah B, Said ET. Percutaneous auricular nerve stimulation (neuromodulation) for the treatment of pain following outpatient surgery: a proof-of-concept case series. Reg Anesth Pain Med. 2022;47(9):581-5.
  406. Jo Y, Lee SM, Jung T, Park G, Lee C, Im GH, et al. General-Purpose Ultrasound Neuromodulation System for Chronic, Closed-Loop Preclinical Studies in Freely Behaving Rodents. Adv Sci (Weinh). 2022;9(34):e2202345.
  407. Jones RM, Caskey CF, Dayton PA, Oralkan O, Pinton GF. Transcranial Neuromodulation Array With Imaging Aperture for Simultaneous Multifocus Stimulation in Nonhuman Primates. IEEE Trans Ultrason Ferroelectr Freq Control. 2022;69(1):261-72.
  408. Kesikburun S. Non-invasive brain stimulation in rehabilitation. Turk J Phys Med Rehabil. 2022;68(1):1-8.
  409. Kim ES, Chang SY. Patch Clamp Technology for Focused Ultrasonic (FUS) Neuromodulation. Methods Mol Biol. 2022;2393:657-70.
  410. Kim H-C, Lee W, Kowsari K, Weisholtz DS, Yoo S-S. Effects of focused ultrasound pulse duration on stimulating cortical and subcortical motor circuits in awake sheep. PLOS ONE. 2022;17(12):e0278865.
  411. Kim YG, Kim SE, Lee J, Hwang S, Yoo SS, Lee HW. Neuromodulation Using Transcranial Focused Ultrasound on the Bilateral Medial Prefrontal Cortex. J Clin Med. 2022;11(13).
  412. Lee YK, Gold MS, Fuehrlein BS. Looking beyond the opioid receptor: A desperate need for new treatments for opioid use disorder. J Neurol Sci. 2022;432:120094.
  413. Li N, Gaur P, Quah K, Butts Pauly K. Improving in situ acoustic intensity estimates using MR acoustic radiation force imaging in combination with multifrequency MR elastography. Magn Reson Med. 2022;88(4):1673-89.
  414. Li Y, Jiang Y, Lan L, Ge X, Cheng R, Zhan Y, et al. Optically-generated focused ultrasound for noninvasive brain stimulation with ultrahigh precision. Light: Science & Applications. 2022;11(1):321.
  415. Lim J, Chu YC, Tai HH, Chien A, Huang SS, Chen CC, et al. Auditory independent low-intensity ultrasound stimulation of mouse brain is associated with neuronal ERK phosphorylation and an increase of Tbr2 marked neuroprogenitors. Biochem Biophys Res Commun. 2022;613:113-9.
  416. Liss A, Hellman A, Patel VJ, Maietta T, Byraju K, Trowbridge R, et al. Low Intensity Focused Ultrasound Increases Duration of Anti-Nociceptive Responses in Female Common Peroneal Nerve Injury Rats. Neuromodulation. 2022;25(4):504-10.
  417. Liu H, Sigona M, Manuel T, Chen LM, Caskey C, Dawant B. Synthetic CT Skull Generation for Transcranial MR Imaging-Guided Focused Ultrasound Interventions with Conditional Adversarial Networks2022.
  418. Marzouk MH, Darwish MH, El-Tamawy MS, Morsy S, Abbas RL, Ali AS. Posterior tibial nerve stimulation as a neuromodulation therapy in treatment of neurogenic overactive bladder in multiple sclerosis: A prospective randomized controlled study. Mult Scler Relat Disord. 2022;68:104252.
  419. Mohammadjavadi M, Ash RT, Li N, Gaur P, Kubanek J, Saenz Y, et al. Transcranial ultrasound neuromodulation of the thalamic visual pathway in a large animal model and the dose-response relationship with MR-ARFI. Scientific Reports. 2022;12(1):19588.
  420. Morton C, Cotero V, Ashe J, Ginty F, Puleo C. Accelerating cutaneous healing in a rodent model of type II diabetes utilizing non-invasive focused ultrasound targeted at the spleen. Front Neurosci. 2022;16:1039960.
  421. Musa M, Sengupta S, Chen Y. Design of a 6-DoF Parallel Robotic Platform for MRI Applications. Journal of Medical Robotics Research. 2022;07(02n03):2241005.
  422. Nguyen DT, Berisha DE, Konofagou EE, Dmochowski JP. Neuronal responses to focused ultrasound are gated by pre-stimulation brain rhythms. Brain Stimul. 2022;15(1):233-43.
  423. Niu X, Yu K, He B. Transcranial focused ultrasound induces sustained synaptic plasticity in rat hippocampus. Brain Stimul. 2022;15(2):352-9.
  424. Pang N, Meng W, Zhong Y, Liu X, Lin Z, Guo T, et al. Ultrasound Deep Brain Stimulation Modulates Body Temperature in Mice. IEEE Trans Neural Syst Rehabil Eng. 2022;30:1851-7.
  425. Park TY, Jeong JH, Chung YA, Yeo SH, Kim H. Application of subject-specific helmets for the study of human visuomotor behavior using transcranial focused ultrasound: a pilot study. Computer Methods and Programs in Biomedicine. 2022;226:107127.
  426. Paromov KV, Svirskii DA, Kirov MY. Treatment option for diaphragm dysfunction after cardiac surgery: a review and a clinical case. Annals of critical care. 2022.
  427. Provansal M, Marazova K, Sahel JA, Picaud S. Vision Restoration by Optogenetic Therapy and Developments Toward Sonogenetic Therapy. Transl Vis Sci Technol. 2022;11(1):18.
  428. Qiao Y, Zou C, Wen J, Long X, Cheng C, Yang W, et al. MARFit: An Integrated Software for Real-Time MR Guided Focused Ultrasound Neuromodulation System. IEEE Trans Neural Syst Rehabil Eng. 2022;30:264-73.
  429. Ramachandran S, Niu X, Yu K, He B. Transcranial ultrasound neuromodulation induces neuronal correlation change in the rat somatosensory cortex. J Neural Eng. 2022;19(5).
  430. Rao A, Krishnan N. Update on Renal Sympathetic Denervation for the Treatment of Hypertension. Curr Cardiol Rep. 2022;24(10):1261-71.
  431. Riis TS, Webb TD, Kubanek J. Acoustic properties across the human skull. Ultrasonics. 2022;119:106591.
  432. Sahoo RK, Jadon A, Nair A, Ahmed A, Giri D, Kar R. Superficial peroneal nerve entrapment neuropathy and role of pulsed radiofrequency neuromodulation. Agri. 2022;34(3):210-2.
  433. San-Emeterio-Iglesias R, De-la-Cruz-Torres B, Romero-Morales C, Minaya-Muñoz F. Effect of Ultrasound-Guided Percutaneous Neuromodulation of Sciatic Nerve on Hip Muscle Strength in Chronic Low Back Pain Sufferers: A Pilot Study. J Clin Med. 2022;11(22).
  434. Seo H, Huh H, Lee EH, Park J. Numerical Evaluation of the Effects of Transducer Displacement on Transcranial Focused Ultrasound in the Rat Brain. Brain Sci. 2022;12(2).
  435. Smith CS, O'Driscoll C, Ebbini ES. Spatio-Spectral Ultrasound Characterization of Reflection and Transmission Through Bone With Temperature Dependence. IEEE Trans Ultrason Ferroelectr Freq Control. 2022;69(5):1727-37.
  436. Spivak NM, Sanguinetti JL, Monti MM. Focusing in on the Future of Focused Ultrasound as a Translational Tool. Brain Sci. 2022;12(2).
  437. Wagner JL. The vagus nerve: current concepts in anaesthesia and ICU management. Southern African Journal of Anaesthesia and Analgesia. 2022;28(5):193-7.
  438. Wang M, Yin Y, Yang H, Pei Z, Molassiotis A. Evaluating the safety, feasibility, and efficacy of non-invasive neuromodulation techniques in chemotherapy-induced peripheral neuropathy: A systematic review. Eur J Oncol Nurs. 2022;58:102124.
  439. Wang Y, Bai Y, Xiao X, Wang L, Wei G, Guo M, et al. Low-intensity focused ultrasound stimulation reverses social avoidance behavior in mice experiencing social defeat stress. Cereb Cortex. 2022;32(24):5580-96.
  440. Webber HE, Schmitz JM. The potential of brain stimulation techniques for substance use disorder treatment. Braz J Psychiatry. 2022;44(3):239-41.
  441. Yamada K. DBS and Ablation Surgery for Movement Disorders. Japanese Journal of Neurosurgery. 2022;31(7):448-53.
  442. Yang FY, Huang LH, Wu MT, Pan ZY. Ultrasound Neuromodulation Reduces Demyelination in a Rat Model of Multiple Sclerosis. Int J Mol Sci. 2022;23(17).
  443. Yoo S, Mittelstein DR, Hurt RC, Lacroix J, Shapiro MG. Focused ultrasound excites cortical neurons via mechanosensitive calcium accumulation and ion channel amplification. Nature Communications. 2022;13(1):493.
  444. Zeng K, Darmani G, Fomenko A, Xia X, Tran S, Nankoo JF, et al. Induction of Human Motor Cortex Plasticity by Theta Burst Transcranial Ultrasound Stimulation. Ann Neurol. 2022;91(2):238-52.
  445. Zhang H, Xu M, Song X, Zhang C, Wang X, Chen S, et al., editors. Research on the Modulation Method of Transcranial Focused Ultrasound based on Multi-array Transducer. 2022 16th ICME International Conference on Complex Medical Engineering (CME); 2022 4-6 Nov. 2022.
  446. Zhang MF, Chen WZ, Huang FB, Peng ZY, Quan YC, Tang ZM. Low-intensity transcranial ultrasound stimulation facilitates hand motor function and cortical excitability: A crossover, randomized, double blind study. Front Neurol. 2022;13:926027.
  447. Zhuang X, He J, Wu J, Ji X, Chen Y, Yuan M, et al. A Spatial Multitarget Ultrasound Neuromodulation System Using High-Powered 2-D Array Transducer. IEEE Trans Ultrason Ferroelectr Freq Control. 2022;69(3):998-1007.
  448. Zhuo J, Gill JP, Jansen ED, Jenkins MW, Chiel HJ. Use of an invertebrate animal model (Aplysia californica) to develop novel neural interfaces for neuromodulation. Front Neurosci. 2022;16:1080027.
  449. Alberte-Woodward Ml, Rey JR, González JMÓP. Protocolo de tratamiento de la disfunción del tracto urinario inferior en la esclerosis múltiple y trastornos relacionados. Medicine - Programa de Formación Médica Continuada Acreditado. 2023;13(78):4646-8.
  450. Bao SC, Li F, Xiao Y, Niu L, Zheng H. Peripheral focused ultrasound stimulation and its applications: From therapeutics to human-computer interaction. Front Neurosci. 2023;17:1115946.
  451. Beisteiner R, Hallett M, Lozano AM. Ultrasound Neuromodulation as a New Brain Therapy. Advanced Science. 2023;10(14):2205634.
  452. Chawla A, Patil MC, Reddy SJ, Pillai S, N SSB. Global Differences in Management of Neurogenic Bladder: Indian Perspective. Current Bladder Dysfunction Reports. 2023;18(2):183-92.
  453. Chu PC, Huang CS, Ing SZ, Yu HY, Fisher RS, Liu HL. Pulsed Focused Ultrasound Reduces Hippocampal Volume Loss and Improves Behavioral Performance in the Kainic Acid Rat Model of Epilepsy. Neurotherapeutics. 2023;20(2):502-17.
  454. Giacobbe P, Burhan AM, Waxman R, Ng E. Interventional Psychiatry and Neurotechnologies: Education and Ethics Training. Canadian Journal of Neurological Sciences. 2023;50(s1):s10-s6.
  455. Gouveia FV, Lea-Banks H, Aubert I, Lipsman N, Hynynen K, Hamani C. Anesthetic-loaded nanodroplets with focused ultrasound reduces agitation in Alzheimer's mice. Ann Clin Transl Neurol. 2023;10(4):507-19.
  456. Hu YY, Yang G, Liang XS, Ding XS, Xu DE, Li Z, et al. Transcranial low-intensity ultrasound stimulation for treating central nervous system disorders: A promising therapeutic application. Front Neurol. 2023;14:1117188.
  457. Ilfeld BM, Plunkett A, Vijjeswarapu AM, Hackworth R, Dhanjal S, Turan A, et al. Percutaneous Neuromodulation of the Brachial Plexus and Sciatic Nerve for the Treatment of Acute Pain Following Surgery: Secondary Outcomes From a Multicenter, Randomized, Controlled Pilot Study. Neuromodulation. 2023;26(3):638-49.
  458. Khan JS, Westwood D, Moayedi M. Ultrasound-guided repetitive pulsed peripheral magnetic stimulation provides pain relief in refractory glossopharyngeal neuralgia: A case report. Can J Pain. 2023;7(1):2157250.
  459. Li K-P, Wu J-J, Zhou Z-L, Xu D-S, Zheng M-X, Hua X-Y, et al. Noninvasive Brain Stimulation for Neurorehabilitation in Post-Stroke Patients. Brain Sciences [Internet]. 2023; 13(3).
  460. Wang Q, Liu T, Chang H, Li Z, Chen L, Mi X, et al. Low-Intensity Pulsed Ultrasound Attenuates Postoperative Neurocognitive Impairment and Salvages Hippocampal Synaptogenesis in Aged Mice. Brain Sci. 2023;13(4).
  461. Yaakub SN, White TA, Kerfoot E, Verhagen L, Hammers A, Fouragnan EF. Pseudo-CTs from T1-weighted MRI for planning of low-intensity transcranial focused ultrasound neuromodulation: An open-source tool. Brain Stimul. 2023;16(1):75-8.
  462. Zanos S, Ntiloudi D, Pellerito J, Ramdeo R, Graf J, Wallace K, et al. Focused ultrasound neuromodulation of the spleen activates an anti-inflammatory response in humans. Brain Stimulation. 2023;16(3):703-11.
  463. Zhu J, Xian Q, Hou X, Wong KF, Zhu T, Chen Z, et al. The mechanosensitive ion channel Piezo1 contributes to ultrasound neuromodulation. Proc Natl Acad Sci U S A. 2023;120(18):e2300291120.
  464. Petri E. Urogynecologic work-up prior to conservative or surgical treatment. Gynakologe. 2003;36:349-61.
  465. Lumi CM, Muñoz JP, La Rosa L. [Sacral neuromodulation in fecal incontinence. A pilot prospective experience in Argentina]. Acta Gastroenterol Latinoam. 2007;37(1):29-36.
  466. Parker J, Buga S, Sarria JE, Spiess PE. Advancements in the management of urologic chronic pelvic pain: what is new and what do we know? Curr Urol Rep. 2010;11(4):286-91.
  467. Ratto C, Litta F, Parello A, Donisi L, Doglietto GB. Sacral nerve stimulation is a valid approach in fecal incontinence due to sphincter lesions when compared to sphincter repair. Dis Colon Rectum. 2010;53(3):264-72.
  468. Bystritsky A, Korb AS, Douglas PK, Cohen MS, Melega WP, Mulgaonkar AP, et al. A review of low-intensity focused ultrasound pulsation. Brain Stimul. 2011;4(3):125-36.
  469. McRoberts P, Cairns KD, Deer T. Stimulation of the peripheral nervous system for the painful extremity. Prog Neurol Surg. 2011;24:156-70.
  470. Schlesinger D, Benedict S, Sheehan J, Larner J. WE-C-220-03: Lessons Learned: Creating a Dedicated Focused Ultrasound Surgery Program. Medical Physics. 2011;38:3812.
  471. Tyler WJ. Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis. Neuroscientist. 2011;17(1):25-36.
  472. Babakhanian M, Fan R, Mulgaonkar A, Singh R, Culjat M, Danesh S, et al. In vitro cell system for studying molecular mechanisms of action associated with low intensity focused ultrasound. Progress in Biomedical Optics and Imaging - Proceedings of SPIE. 2012;8214:16.
  473. Jun SB. Ultrasound as a noninvasive neuromodulation tool. Biomedical Engineering Letters. 2012;2(1):8-12.
  474. Kim H, Taghados SJ, Fischer K, Maeng LS, Park S, Yoo SS. Noninvasive transcranial stimulation of rat abducens nerve by focused ultrasound. Ultrasound Med Biol. 2012;38(9):1568-75.
  475. Medel R, Monteith SJ, Elias WJ, Eames M, Snell J, Sheehan JP, et al. Magnetic resonance-guided focused ultrasound surgery: Part 2: A review of current and future applications. Neurosurgery. 2012;71(4):755-63.
  476. Rodemer C, Jenne J, Fatar M, Hennerici MG, Meairs S. Effects of ultrasound upon endothelial cell ultrastructure. AIP Conference Proceedings. 2012;1503(1):7-11.
  477. Metwally MK, Han HS, Jeon HJ, Khang G, Kim TS. Influence of the anisotropic mechanical properties of the skull in low-intensity focused ultrasound towards neuromodulation of the brain. Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:4565-8.
  478. Schlesinger D, Benedict S, Diederich C, Gedroyc W, Klibanov A, Larner J. MR-guided focused ultrasound surgery, present and future. Med Phys. 2013;40(8):080901.
  479. Sundaram H, Kiripolsky M. Nonsurgical rejuvenation of the upper eyelid and brow. Clin Plast Surg. 2013;40(1):55-76.
  480. Younan Y, Deffieux T, Larrat B, Fink M, Tanter M, Aubry JF. Influence of the pressure field distribution in transcranial ultrasonic neurostimulation. Med Phys. 2013;40(8):082902.
  481. Bauer R, Martin E, Haegele-Link S, Kaegi G, von Specht M, Werner B. Noninvasive functional neurosurgery using transcranial MR imaging-guided focused ultrasound. Parkinsonism Relat Disord. 2014;20 Suppl 1:S197-9.
  482. Carrault G, Mabo P. Are electronic cardiac devices still evolving? Yearb Med Inform. 2014;9(1):128-34.
  483. Gofeld M, Hanlon JG. Ultrasound-guided placement of a paddle lead onto peripheral nerves: surgical anatomy and methodology. Neuromodulation. 2014;17(1):48-53; discussion
  484. Jolesz FA, McDannold NJ. Magnetic resonance-guided focused ultrasound: a new technology for clinical neurosciences. Neurol Clin. 2014;32(1):253-69.
  485. Kelly KM, Mikell CB, McKhann GM, 2nd. Morning Joe or after-dinner espresso? Improved memory consolidation after caffeine administration. Neurosurgery. 2014;74(6):N8-n11.
  486. Kim H, Lee SD, Chiu A, Yoo SS, Park S. Estimation of the spatial profile of neuromodulation and the temporal latency in motor responses induced by focused ultrasound brain stimulation. Neuroreport. 2014;25(7):475-9.
  487. Korb AS, Shellock FG, Cohen MS, Bystritsky A. Low-intensity focused ultrasound pulsation device used during magnetic resonance imaging: evaluation of magnetic resonance imaging-related heating at 3 Tesla/128 MHz. Neuromodulation. 2014;17(3):236-41; discussion 41.
  488. Mehić E, Xu JM, Caler CJ, Coulson NK, Moritz CT, Mourad PD. Increased Anatomical Specificity of Neuromodulation via Modulated Focused Ultrasound. PLOS ONE. 2014;9(2):e86939.
  489. Stockwell J, Abdi N, Lu X, Maheshwari O, Taghibiglou C. Novel central nervous system drug delivery systems. Chem Biol Drug Des. 2014;83(5):507-20.
  490. Uustal H, Meier RH, 3rd. Pain issues and treatment of the person with an amputation. Phys Med Rehabil Clin N Am. 2014;25(1):45-52.
  491. Yoo SS, Lee W, Kim H. Pulsed application of focused ultrasound to the LI4 elicits deqi sensations: pilot study. Complement Ther Med. 2014;22(4):592-600.
  492. Austin MB, Srivastava D, Bernstein IH, Dover JS. A Survey Comparing Delegation of Cosmetic Procedures Between Dermatologists and Nondermatologists. Dermatol Surg. 2015;41(7):827-32.
  493. Bystritsky A, Korb AS. A Review of Low-Intensity Transcranial Focused Ultrasound for Clinical Applications. Current Behavioral Neuroscience Reports. 2015;2(2):60-6.
  494. Cai F, Yan F, Niu L, Li F, Meng L, Qiu W. Multi-functional biomedical ultrasound: Imaging, manipulation, neuromodulation and therapy. Chinese Science Bulletin (Chinese Version). 2015;60:1864.
  495. Haritonova A, Liu D, Ebbini ES. In Vivo application and localization of transcranial focused ultrasound using dual-mode ultrasound arrays. IEEE Trans Ultrason Ferroelectr Freq Control. 2015;62(12):2031-42.
  496. Mishra NN. Clinical presentation and treatment of bladder pain syndrome/interstitial cystitis (BPS/IC) in India. Transl Androl Urol. 2015;4(5):512-23.
  497. Wang TR, Dallapiazza R, Elias WJ. Neurological applications of transcranial high intensity focused ultrasound. Int J Hyperthermia. 2015;31(3):285-91.
  498. Aubry JF, Tanter M. MR-Guided Transcranial Focused Ultrasound. Adv Exp Med Biol. 2016;880:97-111.
  499. Castellanos I, Balteanu B, Singh T, Zderic V. Therapeutic Modulation of Calcium Dynamics using Ultrasound and Other Energy-based Techniques. IEEE Rev Biomed Eng. 2016;9:177-91.
  500. Leinenga G, Langton C, Nisbet R, Götz J. Ultrasound treatment of neurological diseases--current and emerging applications. Nat Rev Neurol. 2016;12(3):161-74.
  501. Lewis PM, Thomson RH, Rosenfeld JV, Fitzgerald PB. Brain Neuromodulation Techniques: A Review. Neuroscientist. 2016;22(4):406-21.
  502. Moretti R, Leger PL, Besson VC, Csaba Z, Pansiot J, Di Criscio L, et al. Sildenafil, a cyclic GMP phosphodiesterase inhibitor, induces microglial modulation after focal ischemia in the neonatal mouse brain. J Neuroinflammation. 2016;13(1):95.
  503. Neren D, Johnson MD, Legon W, Bachour SP, Ling G, Divani AA. Vagus Nerve Stimulation and Other Neuromodulation Methods for Treatment of Traumatic Brain Injury. Neurocrit Care. 2016;24(2):308-19.
  504. Wu P, Knaack G, Weber D. Neurotechnology for monitoring and restoring sensory, motor, and autonomic functions2016. 98360O p.
  505. Casella DP, Dudley AG, Clayton DB, Pope JCt, Tanaka ST, Thomas J, et al. Modulation of the rat micturition reflex with transcutaneous ultrasound. Neurourol Urodyn. 2017;36(8):1996-2002.
  506. Chaplin V, Dumont E, Caskey CF, editors. Design and characterization of an MR-compatible FUS randomized array for transcranial neuromodulation. 2017 IEEE International Ultrasonics Symposium (IUS); 2017 6-9 Sept. 2017.
  507. Ergun A, Kilinc M, Aydin M, Bozkurt A, Deveci E, editors. Design and evaluation of phased array transducers for deep brain stimulation in nucleus accumbens region of the rat brain. 2017 IEEE International Ultrasonics Symposium (IUS); 2017 6-9 Sept. 2017.
  508. Firouzi K, Ghanouni P, Khuri-Yakub BT, editors. Efficient transcranial ultrasound delivery via excitation of lamb waves: Concept and preliminary results. 2017 IEEE International Ultrasonics Symposium (IUS); 2017 6-9 Sept. 2017.
  509. Gulick DW, Li T, Kleim JA, Towe BC. Comparison of Electrical and Ultrasound Neurostimulation in Rat Motor Cortex. Ultrasound Med Biol. 2017;43(12):2824-33.
  510. Jones JH, Brown A, Moyse D, Qi W, Roy L. Survival Analysis of Occipital Nerve Stimulator Leads Placed under Fluoroscopic Guidance with and without Ultrasonography. Pain Physician. 2017;20(7):E1115-e21.
  511. Mueller JK, Ai L, Bansal P, Legon W. Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound. J Neural Eng. 2017;14(6):066012.
  512. Tanaka S, Inoue T, Hossack JA, Okusa MD. Nonpharmacological, Biomechanical Approaches to Control Inflammation in Acute Kidney Injury. Nephron. 2017;137(4):277-81.
  513. Vetrovsky T, Siranec M, Parenica J, Griva M, Stastny J, Precek J, et al. Effect of a 6-month pedometer-based walking intervention on functional capacity in patients with chronic heart failure with reduced (HFrEF) and with preserved (HFpEF) ejection fraction: study protocol for two multicenter randomized controlled trials. J Transl Med. 2017;15(1):153.
  514. Wattiez N, Constans C, Deffieux T, Daye PM, Tanter M, Aubry JF, et al. Transcranial ultrasonic stimulation modulates single-neuron discharge in macaques performing an antisaccade task. Brain Stimul. 2017;10(6):1024-31.
  515. Wright CJ, Haqshenas SR, Rothwell J, Saffari N. Unmyelinated Peripheral Nerves Can Be Stimulated in Vitro Using Pulsed Ultrasound. Ultrasound Med Biol. 2017;43(10):2269-83.
  516. Ai L, Bansal P, Mueller JK, Legon W. Effects of transcranial focused ultrasound on human primary motor cortex using 7T fMRI: a pilot study. BMC Neuroscience. 2018;19(1):56.
  517. Baek H, Pahk KJ, Kim MJ, Youn I, Kim H. Modulation of Cerebellar Cortical Plasticity Using Low-Intensity Focused Ultrasound for Poststroke Sensorimotor Function Recovery. Neurorehabil Neural Repair. 2018;32(9):777-87.
  518. Bowary P, Greenberg BD. Noninvasive Focused Ultrasound for Neuromodulation: A Review. Psychiatr Clin North Am. 2018;41(3):505-14.
  519. Chaplin V, Phipps MA, Caskey CF. A random phased-array for MR-guided transcranial ultrasound neuromodulation in non-human primates. Phys Med Biol. 2018;63(10):105016.
  520. Constans C, Mateo P, Tanter M, Aubry JF. Potential impact of thermal effects during ultrasonic neurostimulation: retrospective numerical estimation of temperature elevation in seven rodent setups. Phys Med Biol. 2018;63(2):025003.
  521. Creed M. Current and emerging neuromodulation therapies for addiction: insight from pre-clinical studies. Curr Opin Neurobiol. 2018;49:168-74.
  522. Dababou S, Marrocchio C, Scipione R, Erasmus HP, Ghanouni P, Anzidei M, et al. High-Intensity Focused Ultrasound for Pain Management in Patients with Cancer. Radiographics. 2018;38(2):603-23.
  523. Dallapiazza RF, Timbie KF, Holmberg S, Gatesman J, Lopes MB, Price RJ, et al. Noninvasive neuromodulation and thalamic mapping with low-intensity focused ultrasound. J Neurosurg. 2018;128(3):875-84.
  524. Daniels D, Sharabi S, Last D, Guez D, Salomon S, Zivli Z, et al. Focused Ultrasound-Induced Suppression of Auditory Evoked Potentials in Vivo. Ultrasound Med Biol. 2018;44(5):1022-30.
  525. Downs ME, Lee SA, Yang G, Kim S, Wang Q, Konofagou EE. Non-invasive peripheral nerve stimulation via focused ultrasound in vivo. Phys Med Biol. 2018;63(3):035011.
  526. Fisher JAN, Gumenchuk I. Low-intensity focused ultrasound alters the latency and spatial patterns of sensory-evoked cortical responses in vivo. J Neural Eng. 2018;15(3):035004.
  527. Gabriel RA, Ilfeld BM. Novel Methodologies in Regional Anesthesia for Knee Arthroplasty. Anesthesiol Clin. 2018;36(3):387-401.
  528. Kadlubiak K, Jaros J, Treeby BE, editors. GPU-Accelerated Simulation of Elastic Wave Propagation. 2018 International Conference on High Performance Computing & Simulation (HPCS); 2018 16-20 July 2018.
  529. Kang C, Chang TC, Vo J, Charthad J, Weber M, Arbabian A, et al. Long-term in vivo performance of novel ultrasound powered implantable devices. Annu Int Conf IEEE Eng Med Biol Soc. 2018;2018:2985-8.
  530. Kubanek J. Neuromodulation with transcranial focused ultrasound. Neurosurg Focus. 2018;44(2):E14.
  531. Lee SA, Kamimura HAS, Burgess MT, Pouliopoulos A, Konofagou EE, editors. Real-Time Displacement and Cavitation Imaging of Non-Invasive Neuromodulation of the Peripheral Nervous System via Focused Ultrasound. 2018 IEEE International Ultrasonics Symposium (IUS); 2018 22-25 Oct. 2018.
  532. Lee W, Croce P, Margolin RW, Cammalleri A, Yoon K, Yoo SS. Transcranial focused ultrasound stimulation of motor cortical areas in freely-moving awake rats. BMC Neurosci. 2018;19(1):57.
  533. Legon W, Bansal P, Tyshynsky R, Ai L, Mueller JK. Transcranial focused ultrasound neuromodulation of the human primary motor cortex. Scientific Reports. 2018;8(1):10007.
  534. Lin Z, Zhou W, Huang X, Wang K, Tang J, Niu L, et al. On-Chip Ultrasound Modulation of Pyramidal Neuronal Activity in Hippocampal Slices. Advanced Biosystems. 2018;2(8):1800041.
  535. Olmstead TA, Chiarelli PA, Griggs DJ, McClintic AM, Myroniv AN, Mourad PD. Transcranial and pulsed focused ultrasound that activates brain can accelerate remyelination in a mouse model of multiple sclerosis. J Ther Ultrasound. 2018;6:11.
  536. Rojas C, Tedesco M, Massobrio P, Marino A, Ciofani G, Martinoia S, et al. Acoustic stimulation can induce a selective neural network response mediated by piezoelectric nanoparticles. J Neural Eng. 2018;15(3):036016.
  537. Shakuri-Rad J, Cicic A, Thompson J. Prospective randomized study evaluating ultrasound versus fluoroscopy guided sacral InterStim® lead placement: A pilot study. Neurourol Urodyn. 2018;37(5):1737-43.
  538. Suarez-Castellanos I, N'Djin WA, Vion-Bailly J, Perier M, Huberfeld G, Birer A, et al., editors. Ex-Vivo Recording of LEUS-Generated Neural Responses from Mouse Brain Slices Using a Microelectrode Array (MEA) System. 2018 IEEE International Ultrasonics Symposium (IUS); 2018 22-25 Oct. 2018.
  539. Tanaka S, Okusa Mark D. Optogenetics in Understanding Mechanisms of Acute Kidney Injury. Nephron. 2018;140(2):152-5.
  540. Tyler WJ, Lani SW, Hwang GM. Ultrasonic modulation of neural circuit activity. Current Opinion in Neurobiology. 2018;50:222-31.
  541. Ventre D, Puzan M, Ashbolt E, Koppes A. Enhanced total neurite outgrowth and secondary branching in dorsal root ganglion neurons elicited by low intensity pulsed ultrasound. J Neural Eng. 2018;15(4):046013.
  542. Xie P, Zhou S, Wang X, Wang Y, Yuan Y. Effect of pulsed transcranial ultrasound stimulation at different number of tone-burst on cortico-muscular coupling. BMC Neuroscience. 2018;19(1):60.
  543. Yohei K, Takashi A, Kazuya S, Masashi K, Tomomichi O, Ryo S, et al. Development of focus controlling method with transcranial focused ultrasound aided by numerical simulation for noninvasive brain therapy. Japanese Journal of Applied Physics. 2018;57(7S1):07LF22.
  544. Bologna M, Merola A, Ricciardi L. Editorial: Innovative Technologies and Clinical Applications for Invasive and Non-invasive Neuromodulation: From the Workbench to the Bedside. Front Neurol. 2019;10:1350.
  545. Chaplin V, Phipps MA, Jonathan SV, Grissom WA, Yang PF, Chen LM, et al. On the accuracy of optically tracked transducers for image-guided transcranial ultrasound. Int J Comput Assist Radiol Surg. 2019;14(8):1317-27.
  546. Cotero V, Fan Y, Tsaava T, Kressel AM, Hancu I, Fitzgerald P, et al. Noninvasive sub-organ ultrasound stimulation for targeted neuromodulation. Nature Communications. 2019;10(1):952.
  547. Cotero V, Graf J, Zachs DP, Tracey KJ, Ashe J, Lim HH, et al. Peripheral Focused Ultrasound Stimulation (pFUS): New Competitor in Pharmaceutical Markets? SLAS Technol. 2019;24(4):448-52.
  548. Cui K, Zhang S, Sun J, Zhang X, Ding C, Xu G. Inhibitory effect of ultrasonic stimulation on the voltage-dependent potassium currents in rat hippocampal CA1 neurons. BMC Neuroscience. 2019;20(1):3.
  549. Darrow DP, O'Brien P, Richner TJ, Netoff TI, Ebbini ES. Reversible neuroinhibition by focused ultrasound is mediated by a thermal mechanism. Brain Stimul. 2019;12(6):1439-47.
  550. Faure A, Nosjean A, Pittaras E, Duchêne A, Andrieux A, Gory-Fauré S, et al. Dissociated features of social cognition altered in mouse models of schizophrenia: Focus on social dominance and acoustic communication. Neuropharmacology. 2019;159:107334.
  551. Huang X, Lin Z, Meng L, Wang K, Liu X, Zhou W, et al. Non-invasive Low-Intensity Pulsed Ultrasound Modulates Primary Cilia of Rat Hippocampal Neurons. Ultrasound Med Biol. 2019;45(5):1274-83.
  552. Huang X, Lin Z, Wang K, Liu X, Zhou W, Meng L, et al. Transcranial Low-Intensity Pulsed Ultrasound Modulates Structural and Functional Synaptic Plasticity in Rat Hippocampus. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2019;66(5):930-8.
  553. Jiménez-Gambín S, Jiménez N, Benlloch JM, Camarena F, editors. Acoustic Holograms Allow the Generation of Complex Fields Inside the Central Nervous System. 2019 IEEE International Ultrasonics Symposium (IUS); 2019 6-9 Oct. 2019.
  554. Joe H, Pahk KJ, Park S, Kim H. Development of a subject-specific guide system for Low-Intensity Focused Ultrasound (LIFU) brain stimulation. Comput Methods Programs Biomed. 2019;176:105-10.
  555. Kamimura HAS, Lee SA, Niimi Y, Aurup C, Kim MG, Konofagou EE, editors. Focused ultrasound stimulation of median nerve modulates somatosensory evoked responses. 2019 IEEE International Ultrasonics Symposium (IUS); 2019 6-9 Oct. 2019.
  556. Lea-Banks H, O'Reilly MA, Hynynen K. Ultrasound-responsive droplets for therapy: A review. J Control Release. 2019;293:144-54.
  557. Lee EJ, Fomenko A, Lozano AM. Magnetic Resonance-Guided Focused Ultrasound : Current Status and Future Perspectives in Thermal Ablation and Blood-Brain Barrier Opening. J Korean Neurosurg Soc. 2019;62(1):10-26.
  558. Leung SA, Webb TD, Bitton RR, Ghanouni P, Butts Pauly K. A rapid beam simulation framework for transcranial focused ultrasound. Scientific Reports. 2019;9(1):7965.
  559. Li G, Qiu W, Zhang Z, Jiang Q, Su M, Cai R, et al. Noninvasive Ultrasonic Neuromodulation in Freely Moving Mice. IEEE Trans Biomed Eng. 2019;66(1):217-24.
  560. Li Z, Fei C, Li D, Chen Dd, Zhou Q, editors. Adjustable acoustic pattern controlled by "Acoustic mirrors". 2019 IEEE International Ultrasonics Symposium (IUS); 2019 6-9 Oct. 2019.
  561. Liao D, Li F, Lu D, Zhong P. Activation of Piezo1 mechanosensitive ion channel in HEK293T cells by 30 MHz vertically deployed surface acoustic waves. Biochem Biophys Res Commun. 2019;518(3):541-7.
  562. Lin Z, Huang X, Zhou W, Zhang W, Liu Y, Bian T, et al. Ultrasound Stimulation Modulates Voltage-Gated Potassium Currents Associated With Action Potential Shape in Hippocampal CA1 Pyramidal Neurons. Front Pharmacol. 2019;10:544.
  563. Ma K, Zhuang ZG, Wang L, Liu XG, Lu LJ, Yang XQ, et al. The Chinese Association for the Study of Pain (CASP): Consensus on the Assessment and Management of Chronic Nonspecific Low Back Pain. Pain Res Manag. 2019;2019:8957847.
  564. Machado F, Magalhães R, Mendes PM, Sousa N, editors. Low Intensity Focused Ultrasound Modulation of Neural Circuits Activity. 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG); 2019 22-23 Feb. 2019.
  565. Nathou C, Etard O, Dollfus S. Auditory verbal hallucinations in schizophrenia: current perspectives in brain stimulation treatments. Neuropsychiatr Dis Treat. 2019;15:2105-17.
  566. Roet M, Hescham S-A, Jahanshahi A, Rutten BPF, Anikeeva PO, Temel Y. Progress in neuromodulation of the brain: A role for magnetic nanoparticles? Progress in Neurobiology. 2019;177:1-14.
  567. Simola N, Granon S. Ultrasonic vocalizations as a tool in studying emotional states in rodent models of social behavior and brain disease. Neuropharmacology. 2019;159:107420.
  568. Sir E, Eksert S. Ultrasound-guided pulsed radiofrequency neuromodulation of the suprascapular nerve in partial rotator cuff tears. Turk J Med Sci. 2019;49(5):1524-8.
  569. Todd N, Zhang Y, Power C, Becerra L, Borsook D, Livingstone M, et al. Modulation of brain function by targeted delivery of GABA through the disrupted blood-brain barrier. Neuroimage. 2019;189:267-75.
  570. Wang H, Zhou X, Cui D, Liu R, Tan R, Wang X, et al. Comparative Study of Transcranial Magneto-Acoustic Stimulation and Transcranial Ultrasound Stimulation of Motor Cortex. Frontiers in Behavioral Neuroscience. 2019;13.
  571. Wu X, Zhu X, Chong P, Liu J, Andre LN, Ong KS, et al. Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics. Proc Natl Acad Sci U S A. 2019;116(52):26332-42.
  572. Yang C, Li Y, Du M, Chen Z. Recent advances in ultrasound-triggered therapy. J Drug Target. 2019;27(1):33-50.
  573. Zhou X, Liu S, Wang Y, Yin T, Yang Z, Liu Z. High-Resolution Transcranial Electrical Simulation for Living Mice Based on Magneto-Acoustic Effect. Front Neurosci. 2019;13:1342.
  574. Andrés D, Jiménez-Gambín S, Jiménez N, Camarena F, editors. Multifocal acoustic holograms for deep-brain neuromodulation and BBB opening. 2020 IEEE International Ultrasonics Symposium (IUS); 2020 7-11 Sept. 2020.
  575. Asaad WF, Lauro PM, Lee S. The Design of Clinical Studies for Neuromodulation. In: Pouratian N, Sheth SA, editors. Stereotactic and Functional Neurosurgery: Principles and Applications. Cham: Springer International Publishing; 2020. p. 523-40.
  576. Brinker ST, Preiswerk F, White PJ, Mariano TY, McDannold NJ, Bubrick EJ. Focused Ultrasound Platform for Investigating Therapeutic Neuromodulation Across the Human Hippocampus. Ultrasound Med Biol. 2020;46(5):1270-4.
  577. Cammalleri A, Croce P, Lee W, Yoon K, Yoo SS. Therapeutic Potentials of Localized Blood-Brain Barrier Disruption by Noninvasive Transcranial Focused Ultrasound: A Technical Review. J Clin Neurophysiol. 2020;37(2):104-17.
  578. Chen S-G, Tsai C-H, Lin C-J, Lee C-C, Yu H-Y, Hsieh T-H, et al. Transcranial focused ultrasound pulsation suppresses pentylenetetrazol induced epilepsy in vivo. Brain Stimulation. 2020;13(1):35-46.
  579. Coates McCall I, Minielly N, Bethune A, Lipsman N, McDonald PJ, Illes J. Readiness for First-In-Human Neuromodulatory Interventions. Can J Neurol Sci. 2020;47(6):785-92.
  580. Collins MN, Mesce KA. Focused Ultrasound Neuromodulation and the Confounds of Intracellular Electrophysiological Investigation. eNeuro. 2020;7(4).
  581. Constans C, Ahnine H, Santin M, Lehericy S, Tanter M, Pouget P, et al. Non-invasive ultrasonic modulation of visual evoked response by GABA delivery through the blood brain barrier. J Control Release. 2020;318:223-31.
  582. Cotero V, Miwa H, Graf J, Ashe J, Loghin E, Di Carlo D, et al. Peripheral Focused Ultrasound Neuromodulation (pFUS). J Neurosci Methods. 2020;341:108721.
  583. F B, B M, R S, H G. Transcranial Focused Ultrasound Modulates Electrical Behavior of the Neurons: Design and Implementation of a Model. J Biomed Phys Eng. 2020;10(1):65-74.
  584. Fernandez-Garcia C, Alonso-Frech F, Monje MHG, Matias-Guiu J. Role of deep brain stimulation therapy in the magnetic resonance-guided high-frequency focused ultrasound era: current situation and future prospects. Expert Rev Neurother. 2020;20(1):7-21.
  585. Ganesh A, Qadri YJ, Boortz-Marx RL, Al-Khatib SM, Harpole DH, Jr., Katz JN, et al. Stellate Ganglion Blockade: an Intervention for the Management of Ventricular Arrhythmias. Curr Hypertens Rep. 2020;22(12):100.
  586. Gaur P, Casey KM, Kubanek J, Li N, Mohammadjavadi M, Saenz Y, et al. Histologic safety of transcranial focused ultrasound neuromodulation and magnetic resonance acoustic radiation force imaging in rhesus macaques and sheep. Brain Stimul. 2020;13(3):804-14.
  587. Haffey PR, Bansal N, Kaye E, Ottestad E, Aiyer R, Noori S, et al. The Regenerative Potential of Therapeutic Ultrasound on Neural Tissue: A Pragmatic Review. Pain Med. 2020;21(7):1494-506.
  588. Hashimoto Y, Campbell M. Tight junction modulation at the blood-brain barrier: Current and future perspectives. Biochim Biophys Acta Biomembr. 2020;1862(9):183298.
  589. Horn A, Fox MD. Opportunities of connectomic neuromodulation. Neuroimage. 2020;221:117180.
  590. Huang Y-S, Fan C-H, Hsu N, Chiu N-H, Wu C-Y, Chang C-Y, et al. Sonogenetic Modulation of Cellular Activities Using an Engineered Auditory-Sensing Protein. Nano Letters. 2020;20(2):1089-100.
  591. Ji N, Lin W-H, Chen F, Xu L, Huang J, Li G. Blood Pressure Modulation With Low-Intensity Focused Ultrasound Stimulation to the Vagus Nerve: A Pilot Animal Study. Frontiers in Neuroscience. 2020;14.
  592. Kang KC, Kim YH, Park KK, Firouzi K, Khuri-Yakub BT, editors. Transcranial Ultrasound Using Leaky Lamb Waves by Wedge Transducer Array. 2020 IEEE International Ultrasonics Symposium (IUS); 2020 7-11 Sept. 2020.
  593. Kinfe T, Stadlbauer A, Winder K, Hurlemann R, Buchfelder M. Incisionless MR-guided focused ultrasound: technical considerations and current therapeutic approaches in psychiatric disorders. Expert Rev Neurother. 2020;20(7):687-96.
  594. Lee SA, Kamimura HAS, Burgess MT, Konofagou EE. Displacement Imaging for Focused Ultrasound Peripheral Nerve Neuromodulation. IEEE Trans Med Imaging. 2020;39(11):3391-402.
  595. Li D, Cui Z, Xu S, Xu T, Wu S, Bouakaz A, et al. Low-Intensity Focused Ultrasound Stimulation Treatment Decreases Blood Pressure in Spontaneously Hypertensive Rats. IEEE Trans Biomed Eng. 2020;67(11):3048-56.
  596. Mahoney JJ, 3rd, Hanlon CA, Marshalek PJ, Rezai AR, Krinke L. Transcranial magnetic stimulation, deep brain stimulation, and other forms of neuromodulation for substance use disorders: Review of modalities and implications for treatment. J Neurol Sci. 2020;418:117149.
  597. Manuel TJ, Jonathan SV, Phipps MA, Caskey CF, editors. Considerations for precise sonication of distal cortical targets in the macaque. 2020 IEEE International Ultrasonics Symposium (IUS); 2020 7-11 Sept. 2020.
  598. Maslakowski MS, Ilham SJ, Hall T, Subramanian T, Kiani M, Almekkawy M, editors. The Characterization and Assembly of an Efficient, Cost Effective Focused Ultrasound Transducer. 2020 IEEE 14th Dallas Circuits and Systems Conference (DCAS); 2020 15-16 Nov. 2020.
  599. Meneghetti N, Dedola F, Gavryusev V, Sancataldo G, Turrini L, de Vito G, et al. Direct activation of zebrafish neurons by ultrasonic stimulation revealed by whole CNS calcium imaging. J Neural Eng. 2020;17(5):056033.
  600. Pashaei V, Dehghanzadeh P, Enwia G, Bayat M, Majerus SJA, Mandal S. Flexible Body-Conformal Ultrasound Patches for Image-Guided Neuromodulation. IEEE Trans Biomed Circuits Syst. 2020;14(2):305-18.
  601. Rabut C, Ferrier J, Bertolo A, Osmanski B, Mousset X, Pezet S, et al. Pharmaco-fUS: Quantification of pharmacologically-induced dynamic changes in brain perfusion and connectivity by functional ultrasound imaging in awake mice. NeuroImage. 2020;222:117231.
  602. Rich MC, Sherwood J, Bartley AF, Whitsitt QA, Lee M, Willoughby WR, et al. Focused ultrasound blood brain barrier opening mediated delivery of MRI-visible albumin nanoclusters to the rat brain for localized drug delivery with temporal control. J Control Release. 2020;324:172-80.
  603. Sigona M, Phipps MA, Kusunose J, Caskey CF, editors. From Targeting to Simulation: Transducer Positioning and Localization for Focused Ultrasound Transcranial Applications. 2020 IEEE International Ultrasonics Symposium (IUS); 2020 7-11 Sept. 2020.
  604. Tohyama S, Walker MR, Sammartino F, Krishna V, Hodaie M. The Utility of Diffusion Tensor Imaging in Neuromodulation: Moving Beyond Conventional Magnetic Resonance Imaging. Neuromodulation. 2020;23(4):427-35.
  605. Vo J, Chang TC, Shea KI, Myers M, Arbabian A, Vasudevan S. Assessment of miniaturized ultrasound-powered implants: an in vivo study. J Neural Eng. 2020;17(1):016072.
  606. Wang JB, Di Ianni T, Vyas DB, Huang Z, Park S, Hosseini-Nassab N, et al. Focused Ultrasound for Noninvasive, Focal Pharmacologic Neurointervention. Front Neurosci. 2020;14:675.
  607. Wu CY, Fan CH, Chiu NH, Ho YJ, Lin YC, Yeh CK. Targeted delivery of engineered auditory sensing protein for ultrasound neuromodulation in the brain. Theranostics. 2020;10(8):3546-61.
  608. Wu Y, Gao Q, Zhu S, Wu Q, Zhu R, Zhong H, et al. Low-intensity pulsed ultrasound regulates proliferation and differentiation of neural stem cells through notch signaling pathway. Biochem Biophys Res Commun. 2020;526(3):793-8.
  609. Yang H, Yuan Y, Wang X, Li X. Closed-Loop Transcranial Ultrasound Stimulation for Real-Time Non-invasive Neuromodulation in vivo. Front Neurosci. 2020;14:445.
  610. Yang Y, Wang C, Li Y, Huang J, Cai F, Xiao Y, et al. Development of Scalable 2D Plane Array for Transcranial Ultrasonic Neuromodulation on Non-Human Primates: An Ex Vivo Study. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2020;28(2):361-9.
  611. Yuan Y, Wang Z, Liu M, Shoham S. Cortical hemodynamic responses induced by low-intensity transcranial ultrasound stimulation of mouse cortex. NeuroImage. 2020;211:116597.
  612. Zibly Z, Averbuch S, Deogaonker M. Emerging Technologies and Indications of Neuromodulation and Increasing Role of Non Invasive Neuromodulation. Neurol India. 2020;68(Supplement):S316-s21.
  613. Poon C, McMahon D, Hynynen K. Noninvasive and targeted delivery of therapeutics to the brain using focused ultrasound. Neuropharmacology. 2017;120:20-37.
  614. Liu D, Schaible K, Low W, Ebbini ES, editors. Three-dimensional image guidance for transcranial focused ultrasound therapy. 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017); 2017 18-21 April 2017.
  615. Constans C, Deffieux T, Pouget P, Tanter M, Aubry JF. A 200-1380-kHz Quadrifrequency Focused Ultrasound Transducer for Neurostimulation in Rodents and Primates: Transcranial In Vitro Calibration and Numerical Study of the Influence of Skull Cavity. IEEE Trans Ultrason Ferroelectr Freq Control. 2017;64(4):717-24.
  616. Robertson JL, Cox BT, Jaros J, Treeby BE. Accurate simulation of transcranial ultrasound propagation for ultrasonic neuromodulation and stimulation. J Acoust Soc Am. 2017;141(3):1726.
  617. Han M, Hur Y, Hwang J, Park J. Biological effects of blood-brain barrier disruption using a focused ultrasound. Biomed Eng Lett. 2017;7(2):115-20.
  618. Fishman PS, Frenkel V. Focused Ultrasound: An Emerging Therapeutic Modality for Neurologic Disease. Neurotherapeutics. 2017;14(2):393-404.
  619. Fini M, Tyler WJ. Transcranial focused ultrasound: a new tool for non-invasive neuromodulation. Int Rev Psychiatry. 2017;29(2):168-77.
  620. Dallapiazza RFT, K. Elias, W.J. Ultrasound Neuromodulation: A Chapter for Innovative Neuromodulation. Innovative Neuromodulation 2017. p. 101-21.
  621. Yoo S-S, Lee W, Jolesz F. FUS-mediated image-guided neuromodulation of the brain. 2017. p. 443-55.
  622. Ayuzawa S, Matsumura A. Neuromodulation : Present Features and Perspectives. Japanese Journal of Neurosurgery. 2017;26:864-72.
  623. Reddy CG, Flouty OE, Holland MT, Rettenmaier LA, Zanaty M, Elahi F. Novel technique for trialing peripheral nerve stimulation: ultrasonography-guided StimuCath trial. Neurosurg Focus. 2017;42(3):E5.
  624. Giugno A, Maugeri R, Graziano F, Gagliardo C, Franzini A, Catalano C, et al. Restoring Neurological Physiology: The Innovative Role of High-Energy MR-Guided Focused Ultrasound (HIMRgFUS). Preliminary Data from a New Method of Lesioning Surgery. Acta Neurochir Suppl. 2017;124:55-9.
  625. Jiang X, Savchenko O, Li Y, Qi S, Yang T, Zhang W, et al. A Review of Low-Intensity Pulsed Ultrasound for Therapeutic Applications. IEEE Trans Biomed Eng. 2019;66(10):2704-18.
  626. Kim H, Chiu A, Park S, Yoo SS. Image-guided Navigation of Single-element Focused Ultrasound Transducer. Int J Imaging Syst Technol. 2012;22(3):177-84.
  627. Kamimura HA, Wang S, Chen H, Wang Q, Aurup C, Acosta C, et al. Focused ultrasound neuromodulation of cortical and subcortical brain structures using 1.9 MHz. Med Phys. 2016;43(10):5730.
  628. Kim J, Lee S. Development of a Wearable Robotic Positioning System for Noninvasive Transcranial Focused Ultrasound Stimulation. IEEE/ASME Transactions on Mechatronics. 2016;21(5):2284-93.
  629. Ventre DM, Koppes AN. The Body Acoustic: Ultrasonic Neuromodulation for Translational Medicine. Cells Tissues Organs. 2016;202(1-2):23-41.
  630. Andrés D, Jiménez N, Camarena F, editors. Transtemporal Ultrasound Holograms for Thalamic Therapy. 2021 IEEE International Ultrasonics Symposium (IUS); 2021 11-16 Sept. 2021.
  631. Appelboom G, Detappe A, LoPresti M, Kunjachan S, Mitrasinovic S, Goldman S, et al. Stereotactic modulation of blood-brain barrier permeability to enhance drug delivery. Neuro Oncol. 2016;18(12):1601-9.
  632. Park TY, Pahk KJ, Kim H. Method to optimize the placement of a single-element transducer for transcranial focused ultrasound. Comput Methods Programs Biomed. 2019;179:104982.
  633. Baek H, Pahk KJ, Kim H. A review of low-intensity focused ultrasound for neuromodulation. Biomed Eng Lett. 2017;7(2):135-42.
  634. Fomenko A, Neudorfer C, Dallapiazza RF, Kalia SK, Lozano AM. Low-intensity ultrasound neuromodulation: An overview of mechanisms and emerging human applications. Brain Stimulation. 2018;11(6):1209-17.
  635. Murphy KR, Farrell JS, Gomez JL, Stedman QG, Li N, Leung SA, et al. A tool for monitoring cell type–specific focused ultrasound neuromodulation and control of chronic epilepsy. Proceedings of the National Academy of Sciences. 2022;119(46):e2206828119.

How to Cite

Yurisaldi, A., Setiobudi , T. ., & Sayyid Hashuro, M. S. (2023). Research trends on the use of ultrasound as neuromodulation-based therapy, based on bibliometric analysis. Bali Medical Journal, 12(3), 3108–3128.




Search Panel

Arman Yurisaldi
Google Scholar
BMJ Journal

Tony Setiobudi
Google Scholar
BMJ Journal

Muhammad Shiddiq Sayyid Hashuro
Google Scholar
BMJ Journal