Skip to main content Skip to main navigation menu Skip to site footer

Hematological parameters in streptozotocin-induced diabetic rats and the effect of Rosa damascena Mills. extract

  • Tamam Jauhar ,
  • Lestari Dewi ,
  • Prajogo Wibowo ,

Abstract

Introduction: Chronic inflammation is the primary factor contributing to the development of diabetes mellitus and its associated problems in affected patients. White blood cells are of significant importance in the degenerative mechanism of blood vessel walls in individuals with diabetes, ultimately leading to the development of atherosclerosis and initiating the rupture of unstable plaques, which subsequently causes thrombosis. Red roses contain anthocyanins, with cyanidin being the specific compound that demonstrates the greatest antioxidant action. The main aim of this study was to investigate the impact of various doses of ethanol extract derived from Rosa Damascena on hematological markers in rats with diabetes.

Methods: This study used an experimental design with a randomized post-test-only control group. A total of twenty male Wistar rats were allocated into five distinct groups for the purpose of this study. The groups were categorized as follows: Healthy Control Group (HCG), Diabetes Group (DG), and Extract Group, which was further separated into three subgroups denoted as P1 (250 mg/kgBW), P2 (500 mg/kgBW), and P3 (1,000 mg/kgBW). The experimental groups received a single injection of streptozotocin at a dosage of 50 mg/kgBW to induce diabetes. Additionally, they were administered oral treatment of Rosa Damascena ethanolic extract for a duration of 2 weeks.

Results: The group denoted as P2 has the lowest NLR, as seen by a mean value of 0.06. In contrast, the group administered with Metformin exhibited the lowest leukocyte value, with a mean of 7.98±6.0. Nevertheless, there are no substantial disparities in the remaining variables.

Conclusion: The results of this study indicate that the ethanol extract obtained from Rosa Damascena did not have a statistically significant effect on the hematological parameters of rats with streptozotocin-induced diabetes.

References

  1. Sharma M, Chan HK, Lavilla CA Jr, Uy MM, Froemming GRA, Okechukwu PN. Induction of a single dose of streptozotocin (50 mg) in rat model causes insulin resistance with type 2 diabetes mellitus. Fundam Clin Pharmacol. 2023 Aug;37(4):769-778. doi: 10.1111/fcp.12892.
  2. Motevalli S, Salahshour HM, Bailey RP. The mediating role of cognitive flexibility in the relationship between cognitive emotion regulation strategies and mindfulness in patients with type 2 diabetes. J Affect Disord. 2023 Oct 15;339:676-682. doi: 10.1016/j.jad.2023.07.043.
  3. Agrawal RP, Ola V, Bishnoi P, Gothwal S, Sirohi P, Agrawal R. Prevalence of micro and macrovascular complications and their risk factors in type-2 diabetes mellitus. J Assoc Physicians India. 2014; 62(6):504-8.
  4. Lotfy M, Adeghate J, Kalasz H, Singh J, Adeghate E. Chronic Complications of Diabetes Mellitus: A Mini Review. Curr Diabetes Rev. 2017; 13(1):3-10. doi: 10.2174/1573399812666151016101622.
  5. Verdoia M, Schaffer A, Barbieri L, Aimaretti G, Marino P, Sinigaglia F, Suryapranata H, De Luca G. Impact of diabetes on neutrophil-to-lymphocyte ratio and its relationship to coronary artery disease. Diabetes & Metabolism, 2015; 41(4): 304-311. https://doi.org/10.1016/j.diabet.2015.01.001
  6. Gong S, Gao X, Xu F, Shang Z, Li S, Chen W, Yang J, Li J. Association of lymphocyte to monocyte ratio with severity of coronary artery disease. Medicine (Baltimore). 2018; 97(43):e12813. doi: 10.1097/MD.0000000000012813.
  7. Azab B, Zaher M, Weiserbs KF, Torbey E, Lacossiere K, Gaddam S, Gobunsuy R, Jadonath S, Baldari D, McCord D, Lafferty J. Usefulness of neutrophil to lymphocyte ratio in predicting short- and long-term mortality after non-ST-elevation myocardial infarction. Am J Cardiol. 2010; 106(4):470-6. doi: 10.1016/j.amjcard.2010.03.062.
  8. Mawardianingrum A, Lindawati NY. Antidiabetic activity of ethanolic extract of kale (Brassica oleracea var. sabellica). JFIKI. 2022; 9(1): 92-100.
  9. Nayebi N, Khalili N, Kamalinejad M, Emtiazy M. A systematic review of the efficacy and safety of Rosa damascena Mill. with an overview on its phytopharmacological properties. Complement Ther Med. 2017; 34:129-140. doi: 10.1016/j.ctim.2017.08.014.
  10. Priska M, Peni N, Carvallo L, Ngapa YD. Review: Anthocyanins and Their Uses. Chemical Cakra. 2018; 6(2):79-97.
  11. Kharisma VD, Probojati RT, Murtadlo AAA, Ansori ANM, Antonius Y, Tamam MB. Revealing potency of bioactive compounds as inhibitor of dengue virus (DENV) NS2b/NS3 protease from sweet potato (Ipomoea batatas L.) leaves. Indian J Forens Med Toxicol. 2021; 15(1): 1627-1632. DOI: 10.37506/ijfmt.v15i1.13644.
  12. Purwanto, B., Liben, P. (2014). Animal models in diabetes research. Experimental Animal Research Protocol Series, 27-30.
  13. Zahedi-Amiri, Z., Taravati, A., & Hejazian, L. B. (2019). Protective Effect of Rosa Damascena Against Aluminum Chloride-Induced Oxidative Stress. Biological trace element research, 187(1), 120–127. https://doi.org/10.1007/s12011-018-1348-4.
  14. Gheibi, S., Kashfi, K., & Ghasemi, A. (2017). A practical guide for induction of type-2 diabetes in rat: Incorporating a high-fat diet and streptozotocin. Biomedicine & pharmacotherapy, 95, 605–613. https://doi.org/10.1016/j.biopha.2017.08.098.
  15. Goyal, S. N., Reddy, N. M., Patil, K. R., Nakhate, K. T., Ojha, S., Patil, C. R., & Agrawal, Y. O. (2016). Challenges and issues with streptozotocin-induced diabetes - A clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chemico-biological interactions, 244, 49–63. https://doi.org/10.1016/j.cbi.2015.11.032.
  16. Lenzen S. (2008). The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia, 51(2), 216–226. https://doi.org/10.1007/s00125-007-0886-7.
  17. Harish Kumar, S., Srinivasa, S.V., (2017). Prabhakar K. Haematological profile of diabetes and non-diabetes patients in rural tertiary centre. Int. J. Adv. Med, 4(5);1271. DOI: https://doi.org/10.18203/2349-3933.ijam20174111.
  18. Wahyuni DK, Ansori ANM, Vidiyanti F. GC-MS analysis of phytocomponents in methanolic extracts of leaf-derived callus of Justicia gendarussa Burm.f. Biosci Res. 2017; 14(3): 668-677.
  19. ANM, Fadholly A, Hayaza S, Susilo RJK, Inayatillah B, Winarni D, Husen SA. A Review on Medicinal Properties of Mangosteen (Garcinia mangostana L.). Res J Pharm Techol. 2020; 13(2):974-982. doi: 10.5958/0974-360X.2020.00182.1.
  20. Hartung T. (2008). Thoughts on limitations of animal models. Parkinsonism & related disorders, 14 Suppl 2, S81–S83. https://doi.org/10.1016/j.parkreldis.2008.04.003.
  21. Iqbal, S., Khalid, S., Shahid, S. (2020). Pharmacological Properties of Rosa damascene. Asian J. Pharm. Tech.; 10(3):183-186. DOI: 10.5958/2231-5713.2020.00031.8.
  22. Tacharina MR, Ansori ANM, Plumeriastuti H, Kusnoto, Kurnijasanti R, Hestianah EP. Beneficial effect of grinting grass (Cynodon dactylon) on the streptozotocin induced diabetes mellitus in the mice. Indian Vet J. 2020; 97(4): 35-38.
  23. Hayaza S, Istiqomah S, Kuncoroningrat Susilo RJ, Inayatillah B, Ansori ANM, Winarni D et al. Antidiabetic activity of ketapang (Terminalia catappa L.) leaves extract in streptozotocin-induced diabetic mice. Indian Vet J. 2019; 96(12): 11-13.
  24. Husen SA, Winarni D, Salamun, Ansori ANM, Susilo RJK, Hayaza S. Hepatoprotective effect of gamma-mangostin for amelioration of impaired liver structure and function in streptozotocin-induced diabetic mice. IOP Confer Ser: Earth Env Sci. 2019; 217(1): 012031. doi: 10.1088/1755-1315/217/1/012031
  25. Husen SA, Setyawan MF, Syadzha MF, Susilo RJK, Hayaza S, Ansori ANM. A novel therapeutic effects of Sargassum ilicifolium alginate and okra (Abelmoschus esculentus) pods extracts on open wound healing process in diabetic mice. Res J Pharm Technol. 2020; 13(6): 2764-2770. doi: 10.5958/0974-360X.2020.00491.6
  26. Khairullah AR, Solikhah TI, Ansori ANM, Fadholly A, Ramandinianto SC, Ansharieta R, Widodo A, Riwu KHP, Putri N, Proboningrat A, Kusala MKJ, Rendragraha BW, Putra ARS, Anshori A. A review of an important medicinal plant: Alpinia galanga (L.) Willd. Syst Rev Pharm. 2020; 11(10): 387-395. doi: 10.31838/srp.2020.10.62.
  27. Winarni D, Husna FN, Syadzha MF, Susilo RJK, Hayaza S, Ansori ANM. Topical Administration Effect of Sargassum duplicatum and Garcinia mangostana Extracts Combination on Open Wound Healing Process in Diabetic Mice. Scientifica. 2022; 2022: 9700794. doi: 10.1155/2022/9700794.
  28. Dhenok Palupi F, Wasita B, Patriadi Nuhriawangsa AM. The potency of Centella asiatica in protecting organs of rats with type 2 diabetes mellitus. Bali Med J. [Internet]. 2019 Apr. 1 [cited 2023 Aug. 27];8(1):316-21. Available from: https://www.balimedicaljournal.org/index.php/bmj/article/view/1229.
  29. Permatasari N, Pangkahila W, Budhiarta AAG, Pangkahila JA, Aman IGM, Wihandani DM, Bachtiar I. Intravenous Wharton’s Jelly stem cell increased the number of ? cells pancreas and reduced the fasting blood glucose level in diabetes mellitus Wistar rat male (Rattus norvegicus). Bali Med J. [Internet]. 2021 Dec. 2 [cited 2023 Aug. 27];10(3):936-9. Available from: https://www.balimedicaljournal.org/index.php/bmj/article/view/2306.
  30. Wijaya MC, Sari GM, Tinduh D. Hyperglycemia caused reduction of cortical bone thickness in streptozotocin-induced diabetic rat. Bali Med J. [Internet]. 2017 Feb. 23 [cited 2023 Aug. 27];6(1):161-3. Available from: https://www.balimedicaljournal.org/index.php/bmj/article/view/393.

How to Cite

Jauhar, T., Dewi, L. ., & Wibowo, P. . (2023). Hematological parameters in streptozotocin-induced diabetic rats and the effect of Rosa damascena Mills. extract. Bali Medical Journal, 12(3), 2743–2747. https://doi.org/10.15562/bmj.v12i3.4754

HTML
8

Total
7

Share

Search Panel