Skip to main content Skip to main navigation menu Skip to site footer

Aquaporin-4 expression related to hydrocephalus severity in hydrocephalus mice model

  • Fachriy Balafif ,
  • Muhammad Arifin Parenrengi ,
  • Wihasto Suryaningtyas ,
  • Dyah Fauziah ,
  • I Ketut Sudiana ,
  • Budi Utomo ,


Link of Video Abstract:


Background: Aquaporin-4 (AQP4), a water channel protein, is important in regulating brain water distribution. We hypothesized that increased expression of AQP4 in the kaolin-induced hydrocephalic mice brain is associated with the severity of hydrocephalus. This study aims to evaluate the AQP4 expression related to hydrocephalus severity in hydrocephalus mice model

Methods: Hydrocephalus was induced in 8-10 weeks Sprague-Dawley mice by kaolin injection into cisterna magna. The mice were randomly divided into normal control and hydrocephalus groups and were sacrificed on days 7, 14, and 21 after kaolin induction. The brains were analyzed for AQP4 expression by histological and immunohistochemistry analysis. Data were analyzed using SPSS version 25.0 for Windows.

Results: Histopathological analysis showed an increase in AQP4 expression in periventricular zone astrocytes with the duration of hydrocephalus (p < 0.001). A significant difference in AQP4 expression in this study was found in the hydrocephalus group between the 7th and 14th days (p = 0.023), 7th and 21st days (p < 0.001), and 14th and 21st days (p = 0.044) after kaolin induction. The highest expression of AQP4 was found in the hydrocephalus induction group on day 21.

Conclusion: The results showed that the expression of AQP4 increased with the severity of hydrocephalus. Expression of AQP4 in the kaolin-induced hydrocephalic mice brain was significantly altered depending on the length of time after kaolin induction. Changes in AQP4 expression in periventricular zone astrocytes may be a compensatory mechanism resulting in drainage of CSF accumulation.


  1. Rekate HL. The definition and classification of hydrocephalus: a personal recommendation to stimulate debate. Cerebrospinal Fluid Research. 2008;5(1): 2.
  2. MacAulay N. Molecular mechanisms of brain water transport. Nature Reviews Neuroscience. 2021;22(6): 326–344.
  3. Kalaiselvi S, Manimaran V, Damodharan N. Nanoparticle as a powerful tool to penetrate the Blood-brain barrier in treating Neurodegenerative disease: Focus on recent advances. Research Journal of Pharmacy and Technology. 2020;13(5): 2135.
  4. Khandbahale S V., Saudagar RB. Nanoparticle-A Review. Asian Journal of Research in Pharmaceutical Science. 2017;7(3):162.
  5. Verkman AS, Tradtrantip L, Smith AJ, Yao X. Aquaporin Water Channels and Hydrocephalus. Pediatric Neurosurgery. 2017;52(6):409–416.
  6. García-Bonilla M, Ojeda-Pérez B, Shumilov K, Rodríguez-Pérez LM, Domínguez-Pinos D, Vitorica J, et al. Generation of Periventricular Reactive Astrocytes Overexpressing Aquaporin 4 Is Stimulated by Mesenchymal Stem Cell Therapy. International Journal of Molecular Sciences. 2023;24(6):5640.
  7. Castañeyra-Ruiz L, González-Marrero I, Hernández-Abad LG, Lee S, Castañeyra-Perdomo A, Muhonen M. AQP4, Astrogenesis, and Hydrocephalus: A New Neurological Perspective. International Journal of Molecular Sciences. 2022;23(18):10438.
  8. Skjolding AD, Rowland IJ, Søgaard L V, Praetorius J, Penkowa M, Juhler M. Hydrocephalus induces dynamic spatiotemporal regulation of aquaporin-4 expression in the rat brain. Cerebrospinal Fluid Research. 2010;7(1):20.
  9. Owler BK, Pitham T, Wang D. Aquaporins: relevance to cerebrospinal fluid physiology and therapeutic potential in hydrocephalus. Cerebrospinal Fluid Research. 2010;7(1):15.
  10. Bloch O, Auguste KI, Manley GT, Verkman A. Accelerated Progression of Kaolin-Induced Hydrocephalus in Aquaporin-4-Deficient Mice. Journal of Cerebral Blood Flow & Metabolism. 2006;26(12):1527–1537.
  11. Wang C, Wang X, Tan C, Wang Y, Tang Z, Zhang Z, et al. Novel therapeutics for hydrocephalus: Insights from animal models. CNS Neuroscience & Therapeutics. 2021;27(9):1012–1022.
  12. Sharma BM, Sharma B. Evaluation of involvement of adrenergic receptor modulator in hypertension induced experimental Vascular Dementia in Rats. Research Journal of Pharmacy and Technology. 2021;14(1):6669–6675.
  13. Desai B, Hsu Y, Schneller B, Hobbs JG, Mehta AI, Linninger A. Hydrocephalus: the role of cerebral aquaporin-4 channels and computational modeling considerations of cerebrospinal fluid. Neurosurgical Focus. 2016;41(3):E8.
  14. Jeon T, Park KS, Park SH, Hwang JH, Hwang SK. Expression of Aquaporin 1 and 4 in the Choroid Plexus and Brain Parenchyma of Kaolin-Induced Hydrocephalic Rats. Korean Journal of Neurotrauma. 2017;13(2): 68.
  15. Atulya M, Alex A, Jesil MA. A Non-invasive Method of Cerebrospinal fluid collection from rats for assessing the Cerebrospinal fluid drug content. Research Journal of Pharmacy and Technology. 2021; 4085–4086.
  16. Trillo-Contreras JL, Ramírez-Lorca R, Villadiego J, Echevarría M. Cellular Distribution of Brain Aquaporins and Their Contribution to Cerebrospinal Fluid Homeostasis and Hydrocephalus. Biomolecules. 2022;12(4): 530..
  17. Di Curzio DL. Animal Models of Hydrocephalus. Open Journal of Modern Neurosurgery. 2018;08(01): 57–71.
  18. Dubey SS. Equilibrium and Thermodynamic Studies of Cesium Adsorption on Kaolinclay. Asian Journal of Research in Chemistry. 2019;12(6): 355.
  19. Bondarev A V., Zhilyakova ET, Avtina N V., Demina NB. The Study of the Chemical composition of Sorption Substances. Research Journal of Pharmacy and Technology. 2020;13(7): 3047.
  20. Suryaningtyas W, Arifin M, Rantam FA, Bajamal AH, Dahlan YP, Dewa Gede Ugrasena I, et al. Erythropoietin protects the subventricular zone and inhibits reactive astrogliosis in kaolin-induced hydrocephalic rats. Child’s Nervous System. 2019;35(3): 469–476.
  21. Lopes S, Slobodian I, Del MR. Characterization of juvenile and young adult mice following induction of hydrocephalus with kaolin. Experimental Neurology. 2009;219(1): 187–196.
  22. Krishnamurthy S, Li J. New concepts in the pathogenesis of hydrocephalus. Translational pediatrics. 2014;3(3): 185–194.
  23. Nikam PM, Gondkar SB, Saudagar RB. Brain Targeting Drug Delivery System: A Review. Asian Journal of Research in Pharmaceutical Science. 2015;5(4): 247.
  24. Amiry-Moghaddam M, Frydenlund DS, Ottersen OP. Anchoring of aquaporin-4 in brain: Molecular mechanisms and implications for the physiology and pathophysiology of water transport. Neuroscience. 2004;129(4): 997–1008.
  25. Guo J, Mi X, Zhan R, Li M, Wei L, Sun J. Aquaporin 4 Silencing Aggravates Hydrocephalus Induced by Injection of Autologous Blood in Rats. Medical Science Monitor. 2018;24: 4204–4212.
  26. McAllister JP 2nd, Miller JM. Aquaporin 4 and hydrocephalus. J Neurosurg. 2006;105(6 Suppl):457-458.
  27. Castañeyra-Ruiz L, González-Marrero I, González-Toledo JM, Castañeyra-Ruiz A, de Paz-Carmona H, Castañeyra-Perdomo A, et al. Aquaporin-4 expression in the cerebrospinal fluid in congenital human hydrocephalus. Fluids and Barriers of the CNS. 2013;10(1):18.
  28. Zakaria FH, Ismail S, Khadijah NMJ. Cerebrospinal Fluid Serotonin Level as Biomarker for Neurotoxicity after 3,4-Methylenedioxymethamphetamine (MDMA). Research Journal of Pharmacy and Technology. 2022;15(8):3796–3801.
  29. Paul L, Madan M, Rammling M, Chigurupati S, Chan SL, Pattisapu J V. Expression of Aquaporin 1 and 4 in a Congenital Hydrocephalus Rat Model. Neurosurgery. 2011;68(2):462–473.
  30. Al-Hussaniy HA, Noori Mohammed Z, Alburghaif AH, Akeel Naji M. Panax ginseng as Antioxidant and Anti-inflammatory to reduce the Cardiotoxicity of Doxorubicin on rat module. Research Journal of Pharmacy and Technology. 2022;15(10):4594-4600:
  31. Choubey A, Kumar H, Jain S. A Systematic Review on Neurobehaviour and Neuroendocrine disorders. Research Journal of Pharmacy and Technology. 2020;13(11):5510–5514.
  32. Mao X, Enno TL, Del Bigio MR. Aquaporin 4 changes in rat brain with severe hydrocephalus. European Journal of Neuroscience. 2006;23(11):2929–2936.
  33. Shen XQ, Miyajima M, Ogino I, Arai H. Expression of the water-channel protein aquaporin 4 in the H-Tx rat: possible compensatory role in spontaneously arrested hydrocephalus. Journal of neurosurgery. 2006;105(6 Suppl):459–464.
  34. Safitri YI, Zuwariah N. The effect of knowledge and attitude of family planning acceptances on iud contraception selection during the COVID-19 pandemic. Bali Medical Journal. 2022;11(2):981–984.
  35. Parenrengi MA, Hakim MW, Suryaningtyas W. Subcutaneous emphysema and pneumocephalus following Ventriculoperitoneal Shunt (VPS) surgery for hydrocephalus: a case report. Bali Medical Journal. 2023;12(2):2110–2113.
  36. Arifin MT, Purnomo F, Muttaqin Z, Bakhtiar Y, Andar E, Priambada D, et al. Cerebrospinal fluid contents and risk of shunt exposure in hydrocephalus. Bali Medical Journal. 2019;8(3):841–843.
  37. Golden N, Mardhika PE, Niryana W, Sukarya IM, Prabawa IPY. Risk factors and novel prognostic score for predicting the 14-day mortality of severe traumatic brain injury patients. Intisari Sains Medis. 2020;11(3):1020-1028.

How to Cite

Balafif, F., Parenrengi, M. A., Suryaningtyas, W., Fauziah, D., Sudiana, I. K., & Utomo, B. (2023). Aquaporin-4 expression related to hydrocephalus severity in hydrocephalus mice model. Bali Medical Journal, 12(3), 3151–3155.




Search Panel

Fachriy Balafif
Google Scholar
BMJ Journal

Muhammad Arifin Parenrengi
Google Scholar
BMJ Journal

Wihasto Suryaningtyas
Google Scholar
BMJ Journal

Dyah Fauziah
Google Scholar
BMJ Journal

I Ketut Sudiana
Google Scholar
BMJ Journal

Budi Utomo
Google Scholar
BMJ Journal