Skip to main content Skip to main navigation menu Skip to site footer

Arachidonic acid pathway in proliferative vitreoretinopathy: the study of the vitreous biomarker in rhegmatogenous retinal detachment

Abstract

Link of Video Abstract: https://youtu.be/qPty3GvoyYo

Background:
While prompt surgical intervention is still the gold standard, controlling the inflammation may prevent or reduce the progression of PVR, thus increasing the surgical success rate. The arachidonic acid pathway has been reported to play a significant role in the development of PVR. This study aims to investigate the role of the arachidonic acid pathway and assess the related vitreous inflammatory biomarkers in cases of RRD with PVR.

Methods: Thirty patients scheduled for a pars plana vitrectomy for RRD with PVR were included in the study. At the beginning of surgery, a sample of undiluted vitreous was collected in each patient to assess vitreous levels of inflammatory biomarkers, including PGE2, COX-2, TGF-β, monocytes (comparison of CD14 and CD45), and total protein. The vitreous inflammatory biomarkers were also analyzed based on the severity of PVR and the onset of RRD.

Results: The mean of PGE2 level was 91.77 ± 31.87 pg/mL, the median (range) of COX-2 level was 1.32 (1.25–1.55) ng/mL; TGF-β was 51.83 (15.61–319.58) pg/mL; monocytes were 90.25 (24.85–95.24) %; and total protein was 4.81 (0.19–20.4) mg/dL. A noticeable trend was found towards the elevation of PGE2, COX-2, TGF- β, monocytes, and total protein vitreous levels in conjunction with the severity of PVR, although no significant differences between the groups (p > 0.05 in each group).

Conclusion: Inflammation, particularly the arachidonic acid pathway, plays a vital role in the early stage of the pathogenesis of PVR. Inhibition of the arachidonic pathway by the anti-inflammatory agent at the early stage may provide a therapeutic approach for PVR prevention.

References

  1. Mudhar HS. A brief review of the histopathology of proliferative vitreoretinopathy (PVR). Eye (Basingstoke). 2020 Feb 1;34(2):246–50. https://doi.org/10.1038/s41433-019-0724-4.
  2. Chaudhary R, Scott RAH, Wallace G, Berry M, Logan A, Blanch RJ. Inflammatory and Fibrogenic Factors in Proliferative Vitreoretinopathy Development. Transl Vis Sci Technol. 2020 Feb 21;9(3):23. https://doi.org/10.1167/tvst.9.3.23.
  3. Charteris DG. Proliferative vitreoretinopathy: revised concepts of pathogenesis and adjunctive treatment. Eye (Lond). 2020 Feb;34(2):241-245. https://doi.org/10.1038/s41433-019-0699-1.
  4. Lukmana IR, Widjaja SA, Sasono W, Firmansjah M, Yustiarini I, Prakosa AD, Moestijab, Suhendro G. Characteristics of Retinal Detachment Patients with Proliferative Vitreoretinopathy at Dr. Soetomo General Academic Hospital. International Journal of Retina (IJRETINA). 2019;2(2):54-61. https://doi.org/10.35479/ijretina.2019.vol002.iss002.75.
  5. Schaub F, Schiller P, Hoerster R, Kraus D, Holz FG, et al. Intravitreal 5-Fluorouracil and Heparin to Prevent Proliferative Vitreoretinopathy: Results from a Randomized Clinical Trial. Ophthalmology. 2022 Oct;129(10):1129-1141. https://doi.org/10.1016/j.ophtha.2022.05.024.
  6. Wong CW, Cheung N, Ho C, Barathi V, Storm G, Wong TT. Characterization of the inflammatory cytokine and growth factor profile in a rabbit model of proliferative vitreoretinopathy. Sci Rep. 2019 Oct 28;9(1):15419. https://doi.org/10.1038/s41598-019-51633-8.
  7. Dai Y, Dai C, Sun T. Inflammatory mediators of proliferative vitreoretinopathy: hypothesis and review. Int Ophthalmol. 2020;40(6):1587–601. https://doi.org/10.1007/s10792-020-01325-4.
  8. Kähler CM, Herold M, Kaufmann G, Andreas-Bernd Pischel, Schratzberger P, Reinisch N, et al. Induction of arachidonic acid metabolite release by human fibroblasts in proliferative vitreoretinopathy. Eur J Pharmacol. 1998;341(1):111–7. https://doi.org/10.1016/s0014-2999(97)01466-0.
  9. Parapuram SK, Chang B, Li L, Hartung RA, Chalam K V., Nair-Menon JU, et al. Differential Effects of TGFβ and Vitreous on the Transformation of Retinal Pigment Epithelial Cells. Investigative Opthalmology & Visual Science. 2009;50(12):5965. https://doi.org/10.1167/iovs.09-3621.
  10. Wang X, Miller EB, Goswami M, Zhang P, Ronning KE, Karlen SJ, et al. Rapid monocyte infiltration following retinal detachment is dependent on non-canonical IL6 signaling through gp130. J Neuroinflammation. 2017;14(1):121. https://doi.org/10.1186/s12974-017-0886-6.
  11. Palomares-Ordóñez JL, Sánchez-Ramos JA, Ramírez-Estudillo JA, Robles-Contreras A. Correlation of transforming growth factor β-1 vitreous levels with clinical severity of proliferative vitreoretinopathy in patients with rhegmatogenous retinal detachment. Arch Soc Esp Oftalmol. 2019;94(1). p12–7. https://doi.org/10.1016/j.oftale.2018.11.003.
  12. Davies JA. Arachidonic Acid. In: xPharm: The Comprehensive Pharmacology Reference. Elsevier; 2008. p. 1–4.
  13. Tikhonovich M, Lyskin P, Ioyleva E, Gavrilova S. Expression of cyclooxygenases and trophic and growth factors in epiretinal membranes at late stages of proliferative vitreoretinopathy. Graefe’s Arch Clin Exp Ophthalmol. 2016 Nov 2;254(11):2277–9. https://doi.org/10.1007/s00417-016-3445-4.
  14. Xu M, Fan X, Huang X, Chen X, Shao Y, Li X. Steroid Drugs as an Adjunct for Reducing the Incidence of Proliferative Vitreoretinopathy after Rhegmatogenous Retinal Detachment Surgery: A Meta-Analysis of Randomized Controlled Studies [published online ahead of print, 2023 Feb 8]. Ophthalmic Res. 2023;66(1):599-610. https://doi.org/10.1159/000529451.
  15. Ben Ghezala I, Mariet AS, Benzenine E, et al. Incidence of Rhegmatogenous Retinal Detachment Following Macular Surgery in France Between 2006 and 2016. Am J Ophthalmol. 2022;243:91-97. https://doi.org/10.1016/j.ajo.2022.07.017
  16. Schoenberger SD, Kim SJ, Sheng J, Rezaei KA, Lalezary M, Cherney E. Increased prostaglandin E2 (PGE2) levels in proliferative diabetic retinopathy and correlation with VEGF and inflammatory cytokines. Invest Ophthalmol Vis Sci. 2012;53(9):5906-5911. https://doi.org/10.1167/iovs.12-10410.
  17. Vichai V, Suyarnsesthakorn C, Pittayakhajonwut D, Sriklung K, Kirtikara K. Positive feedback regulation of COX-2 expression by prostaglandin metabolites. Inflammation Research. 2005 Apr;54(4):163–72. https://doi.org/10.1007/s00011-004-1338-1.
  18. Massagué J. TGF-β SIGNAL TRANSDUCTION. Annu Rev Biochem. 1998 Jun;67(1):753–91. https://doi.org/10.1146/annurev.biochem.67.1.753.
  19. Urbančič M, Petrovič D, Živin AM, Korošec P, Fležar M, Petrovič MG. Correlations between vitreous cytokine levels and inflammatory cells in fibrovascular membranes of patients with proliferative diabetic retinopathy. Mol Vis. 2020 Jun 26;26:472-482.
  20. Ulrich JN, Spannagl M, Kampik A, Gandorfer A. Components of the fibrinolytic system in the vitreous body in patients with vitreoretinal disorders. Clinical and Experimental Ophthalmology. 2008;36:431-6.
  21. Yu J, Liu F, Cui SJ, Liu Y, Song ZY, Cao H, et al. Vitreous proteomic analysis of proliferative vitreoretinopathy. Proteomics. 2008;8:3667-8. https://doi.org/10.1002/pmic.200700824.
  22. Chen C, Chen P, Liu X, Li H. Combined 5-Fluorouracil and Low Molecular Weight Heparin for the Prevention of Postoperative Proliferative Vitreoretinopathy in Patients with Retinal Detachment: A Meta-Analysis. Frontiers in Medicine. 2021;8:790460. https://doi.org/10.3389/fmed.2021.790460.
  23. Wiedemann P, Hilgers RD, Bauer P, Heimann K. Adjunctive daunorubicin in the treatment of proliferative vitreoretinopathy: results of a multicenter clinical trial. Daunomycin Study Group. Am J Ophthalmol. 1998;126(4):550-559. https://doi.org/10.1016/s0002-9394(98)00115-9.

How to Cite

Djatikusumo, A. ., Victor, A. A., Wibowo, H. ., Nora, R. L. D. ., Harahap, A. R. ., Setiabudy, R. ., Sovani, I. ., Ardhia, S. H. ., & Adishabri, A. K. . (2023). Arachidonic acid pathway in proliferative vitreoretinopathy: the study of the vitreous biomarker in rhegmatogenous retinal detachment. Bali Medical Journal, 12(2), 2298–2302. https://doi.org/10.15562/bmj.v12i2.4637

HTML
7

Total
4

Share

Search Panel

Ari Djatikusumo
Google Scholar
Pubmed
BMJ Journal


Andi Arus Victor
Google Scholar
Pubmed
BMJ Journal


Heri Wibowo
Google Scholar
Pubmed
BMJ Journal


Rina La Distia Nora
Google Scholar
Pubmed
BMJ Journal


Alida Roswita Harahap
Google Scholar
Pubmed
BMJ Journal


Rianto Setiabudy
Google Scholar
Pubmed
BMJ Journal


Iwan Sovani
Google Scholar
Pubmed
BMJ Journal


Seruni Hanna Ardhia
Google Scholar
Pubmed
BMJ Journal


Ananda Kukuh Adishabri
Google Scholar
Pubmed
BMJ Journal