Skip to main content Skip to main navigation menu Skip to site footer

Efficacy and safety of topical doxycycline reduce MMP-9 expression towards populations with corneal alkali burn

  • Anindita Juwita ,

Abstract

Introduction: Alkali ocular injury causes disintegration of the cornea by changes in pH level, proteolysis, ulceration, and impairment of collagen synthesis. Doxycycline was found to alter the remodeling of human conjunctival and skin fibroblasts. Doxycycline also reduced collagenolytic degradation of the cornea due to chemical injury by inhibiting matrix metalloprotease (MMP) activity, including in other non-infectious corneal ulcers. This study aimed to determine the efficacy and safety of topical doxycycline to manage corneal alkali burns. A systematic review was conducted in adherence to the PRISMA statement.

Method: Searching was conducted in five databases and inclusion and exclusion criteria were applied afterwards. Three studies were found, considered good, and eligible for inclusion after appraisal using SYRCLE critical appraisal tools for animal studies. All studies used mice models.

Result: We found a significant reduction of IL-1β, IL-6, MMP-8, MMP-9, α-SMA, and NF-κB by doxycycline usage starting from two days of usage. In addition, mRNA angiogenic factors and corneal neovascularization decreased after doxycycline usage. This contributes to better corneal repair after trauma, reflected by better corneal healing and opacity scores after doxycycline usage compared to other groups.

Conclusion: Doxycycline management improved outcomes for patients with corneal alkali burn by decreasing inflammatory cytokine and promoting tissue repair.

References

  1. McCulley JP. Chemical injuries. In: The Cornea: Scientific Foundations and Clinical Practice. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 1987. p. 527–42.
  2. Wagoner MD. Chemical injuries of the eye: current concepts in pathophysiology and therapy. Surv Ophthalmol. 1997;41(4):275–313.
  3. Pfister RR. Chemical trauma. In: The Cornea: Scientific Foundations and Clinical Practice. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2005. p. 781–96.
  4. Schrage NF, Langefeld S, Zschocke J, Kuckelkorn R, Redbrake C, Reim M. Eye burns: an emergency and continuing problem. Burns. 2000 Dec;26(8):689–99.
  5. Gupta N, Farooqui JH, Patel N, Mathur U. Early Results of Penetrating Keratoplasty in Patients With Unilateral Chemical Injury After Simple Limbal Epithelial Transplantation. Cornea. 2018 Oct;37(10):1249–54.
  6. Haring RS, Sheffield ID, Channa R, Canner JK, Schneider EB. Epidemiologic Trends of Chemical Ocular Burns in the United States. JAMA Ophthalmol. 2016 Oct 1;134(10):1119–24.
  7. Paterson CA, Pfister RR. Intraocular pressure changes after alkali burns. Arch Ophthalmol. 1974 Mar;91(3):211–8.
  8. Fagerholm P, Lisha G. Corneal stem cell grafting after chemical injury. Acta Ophthalmol Scand. 1999 Apr;77(2):165–9.
  9. Tuft SJ, Shortt AJ. Surgical rehabilitation following severe ocular burns. Eye (Lond). 2009 Oct;23(10):1966–71.
  10. Cade F, Paschalis EI, Regatieri CV, Vavvas DG, Dana R, Dohlman CH. Alkali burn to the eye: protection using TNF-α inhibition. Cornea. 2014 Apr;33(4):382–9.
  11. Singh P, Tyagi M, Kumar Y, Gupta KK, Sharma PD. Ocular chemical injuries and their management. Oman J Ophthalmol. 2013;6(2):83–6.
  12. Smith VA, Cook SD. Doxycycline-a role in ocular surface repair. Br J Ophthalmol. 2004 May;88(5):619–25.
  13. Hua F, Li XH, Li MM, Zhang CY, Liu HJ, Sun T, et al. Doxycycline attenuates paraquat-induced pulmonary fibrosis by downregulating the TGF-β signaling pathway. J Thorac Dis. 2017;9(11):4376–86.
  14. Shin JM, Park JH, Park IH, Lee HM. Doxycycline inhibits TGF-β1-induced extracellular matrix production in nasal polyp-derived fibroblasts. Int Forum Allergy Rhinol. 2016 Mar;6(3):256–63.
  15. Caton J, Ryan ME. Clinical studies on the management of periodontal diseases utilizing subantimicrobial dose doxycycline (SDD). Pharmacol Res. 2011 Feb;63(2):114–20.
  16. Moore AL, desJardins-Park HE, Duoto BA, Mascharak S, Murphy MP, Irizarry DM, et al. Doxycycline Reduces Scar Thickness and Improves Collagen Architecture. Ann Surg. 2020 Jul;272(1):183–93.
  17. Li H, Ezra DG, Burton MJ, Bailly M. Doxycycline prevents matrix remodeling and contraction by trichiasis-derived conjunctival fibroblasts. Invest Ophthalmol Vis Sci. 2013 Jul 12;54(7):4675–82.
  18. Bian F, Pelegrino FSA, Henriksson JT, Pflugfelder SC, Volpe EA, Li DQ, et al. Differential Effects of Dexamethasone and Doxycycline on Inflammation and MMP Production in Murine Alkali-Burned Corneas Associated with Dry Eye. Ocul Surf. 2016 Apr;14(2):242–54.
  19. Su W, Li Z, Lin M, Li Y, He Z, Wu C, et al. The effect of doxycycline temperature-sensitive hydrogel on inhibiting the corneal neovascularization induced by BFGF in rats. Graefes Arch Clin Exp Ophthalmol. 2011 Mar;249(3):421–7.
  20. Ralph RA. Tetracyclines and the treatment of corneal stromal ulceration: a review. Cornea. 2000 May;19(3):274–7.
  21. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021 Mar 29;372:n71.
  22. Lo CKL, Mertz D, Loeb M. Newcastle-Ottawa Scale: comparing reviewers’ to authors’ assessments. BMC Medical Research Methodology. 2014 Apr 1;14(1):45.
  23. Hooijmans CR, Rovers MM, de Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;26(14):43.
  24. Yi Q, Zou WJ. The Wound Healing Effect of Doxycycline after Corneal Alkali Burn in Rats. J Ophthalmol. 2019;2019:5168652.
  25. Khoshdel AR, Emami Aleagha O, Shahriary A, Aghamollaei H, Najjar Asiabani F. Topical Effects of N-Acetyl Cysteine and Doxycycline on Inflammatory and Angiogenic Factors in the Rat Model of Alkali-Burned Cornea. J Interferon Cytokine Res. 2022 Feb;42(2):82–9.
  26. Torricelli AAM, Wilson SE. Cellular and extracellular matrix modulation of corneal stromal opacity. Exp Eye Res. 2014;129:151–60.
  27. Jester JV, Ho-Chang J. Modulation of cultured corneal keratocyte phenotype by growth factors/cytokines control in vitro contractility and extracellular matrix contraction. Exp Eye Res. 2003 Nov;77(5):581–92.
  28. Sriram S, Tran JA, Zieske JD. Cornea As a Model for Testing CTGF-Based Antiscarring Drugs. Bone Tissue Regen Insights. 2016;7.
  29. Tandon A, Tovey JCK, Sharma A, Gupta R, Mohan RR. Role of transforming growth factor Beta in corneal function, biology and pathology. Curr Mol Med. 2010 Aug;10(6):565–78.
  30. Chen M, Matsuda H, Wang L, Watanabe T, Kimura MT, Igarashi J, et al. Pretranscriptional regulation of Tgf-beta1 by PI polyamide prevents scarring and accelerates wound healing of the cornea after exposure to alkali. Mol Ther. 2010 Mar;18(3):519–27.
  31. Takahashi H, Igarashi T, Fujimoto C, Ozaki N, Ishizaki M. Immunohistochemical observation of amniotic membrane patching on a corneal alkali burn in vivo. Jpn J Ophthalmol. 2007;51(1):3–9.
  32. Saika S. TGF-beta signal transduction in corneal wound healing as a therapeutic target. Cornea. 2004 Nov;23(8 Suppl):S25-30.
  33. Saika S, Yamanaka O, Nishikawa-Ishida I, Kitano A, Flanders KC, Okada Y, et al. Effect of Smad7 gene overexpression on transforming growth factor beta-induced retinal pigment fibrosis in a proliferative vitreoretinopathy mouse model. Arch Ophthalmol. 2007;125(5):647–54.
  34. Behzadian MA, Wang XL, Windsor LJ, Ghaly N, Caldwell RB. TGF-beta increases retinal endothelial cell permeability by increasing MMP-9: possible role of glial cells in endothelial barrier function. Invest Ophthalmol Vis Sci. 2001 Mar;42(3):853–9.
  35. Ebihara N, Nakayama M, Tokura T, Ushio H, Murakami A. Expression and function of fibroblast growth factor-inducible 14 in human corneal myofibroblasts. Exp Eye Res. 2009 Aug;89(2):256–62.
  36. Daniels JT, Geerling G, Alexander RA, Murphy G, Khaw PT, Saarialho-Kere U. Temporal and spatial expression of matrix metalloproteinases during wound healing of human corneal tissue. Exp Eye Res. 2003 Dec;77(6):653–64.
  37. Taheri F, Bazan HEP. Platelet-activating factor overturns the transcriptional repressor disposition of Sp1 in the expression of MMP-9 in human corneal epithelial cells. Invest Ophthalmol Vis Sci. 2007;48(5):1931–41.
  38. Jester JV, Moller-Pedersen T, Huang J, Sax CM, Kays WT, Cavangh HD, et al. The cellular basis of corneal transparency: evidence for ‘corneal crystallins’. J Cell Sci. 1999 Mar;112 ( Pt 5):613–22.
  39. Dan L, Shi-long Y, Miao-li L, Yong-ping L, Hong-jie M, Ying Z, et al. Inhibitory effect of oral doxycycline on neovascularization in a rat corneal alkali burn model of angiogenesis. Curr Eye Res. 2008 Aug;33(8):653–60.
  40. Wang L, Tsang H, Coroneo M. Treatment of recurrent corneal erosion syndrome using the combination of oral doxycycline and topical corticosteroid. Clin Exp Opthalmol. 2008;36(1):8–12.
  41. McElvanney AM. Doxycycline in the management of pseudomonas corneal melting: two case reports and a review of the literature. Eye Contact Lens. 2003 Oct;29(4):258–61.
  42. Peng X, Xiao H, Tang M, Zhan Z, Yang Y, Sun L, et al. Mechanism of fibrosis inhibition in laser induced choroidal neovascularization by doxycycline. Exp Eye Res. 2018 Nov;176:88–97.
  43. Ling S, Li W, Liu L, Zhou H, Wang T, Ye H, et al. Allograft survival enhancement using doxycycline in alkali-burned mouse corneas. Acta Opthalmol. 2013;91(5):369–78.
  44. Ljubimov AV, Saghizadeh M. Progress in corneal wound healing. Prog Retin Eye Res. 2015 Nov;49:17–45.
  45. Saghizadeh M, Kramerov AA, Svendsen CN, Ljubimov AV. Concise Review: Stem Cells for Corneal Wound Healing. Stem Cells. 2017 Oct;35(10):2105–14.
  46. Honma Y, Nishida K, Sotozono C, Kinoshita S. Effect of transforming growth factor-β1 and -β2 onin vitroRabbit corneal epithelial cell proliferation promoted by epidermal growth factor, keratinocyte growth factor, or hepatocyte growth factor. Exp Eye Res. 1997;65(3):391–6.
  47. Nishida K, Sotozono C, Adachi W, Yamamoto S, Yokoi N, Kinoshita S. Transforming growth factor-β1, -β2 and -β3 mRNA expression in human cornea. Curr Eye Res. 1995;14(3):235–41.
  48. Medeiros C, Marino GK, Santhiago MR, Wilson SE. The Corneal Basement Membranes and Stromal Fibrosis - PubMed. Invest Ophthalmol Vis Sci. 2018;59(10):4044–53.
  49. Zieske JD, Hutcheon AE, Guo X, Chung EH, Joyce NC. TGF-beta receptor types I and II are differentially expressed during corneal epithelial wound repair. Invest Ophthalmol Vis Sci. 2001 Jun;42(7):1465–71.
  50. Kawashima Y, Saika S, Miyamoto T, Yamanaka O, Okada Y, Tanaka S, et al. Matrix metalloproteinases and tissue inhibitors of metalloproteinases of fibrous humans lens capsules with intraocular lenses. Curr Eye Res. 2000 Dec;21(6):962–7.
  51. Matsubara M, Girard MT, Kublin CL, Cintron C, Fini ME. Differential roles for two gelatinolytic enzymes of the matrix metalloproteinase family in the remodelling cornea. Dev Biol. 1991 Oct;147(2):425–39.
  52. Gao M, Sang W, Liu F, Yu H, Zhou R, Belin MW, et al. High MMP-9 Expression May Contribute to Retroprosthetic Membrane Formation after KPro Implantation in Rabbit Corneal Alkali Burn Model. J Ophthalmol. 2016;2016:1094279.
  53. Mohan R, Rinehart WB, Bargagna-Mohan P, Fini ME. Gelatinase B/lacZ transgenic mice, a model for mapping gelatinase B expression during developmental and injury-related tissue remodeling. J Biol Chem. 1998 Oct 2;273(40):25903–14.
  54. Bagus Komang Satriyasa, I Gusti Ayu Widianti, I.B.G. Fajar Manuaba. Depot Medroxyprogesterone acetate reduces spermatogonia cells and spermatid cells in the seminiferous tubules of male mice. Bali Med J. [Internet]. 2022 Apr. 30 [cited 2023 Jun. 4];11(1):508-12. Available from: https://www.balimedicaljournal.org/index.php/bmj/article/view/3459.
  55. Fariz M, Indriaswati L, Sutjipto. Effect of medroxyprogesterone and doxycycline on vascular endothelial growth factor (VEGF) expression and corneal neovascularization in corneal alkali trauma. Bali Med J. [Internet]. 2023 Apr. 28 [cited 2023 Jun. 4];12(2):1377-80. Available from: https://www.balimedicaljournal.org/index.php/bmj/article/view/4366.
  56. Urolita TY, Fathimah FSN, Karima A, Nurwasis, Zuhria I. Epigallocatechin gallate effect on Interleukin-1 and MMP-9 expression as Pseudomonas aeruginosa keratitis adjuvant therapy. Bali Med J. [Internet]. 2023 May 27 [cited 2023 Jun. 4];12(2):1691-5. Available from: https://www.balimedicaljournal.org/index.php/bmj/article/view/4382.

How to Cite

Juwita, A. (2023). Efficacy and safety of topical doxycycline reduce MMP-9 expression towards populations with corneal alkali burn. Bali Medical Journal, 12(2), 1840–1845. https://doi.org/10.15562/bmj.v12i2.4533

HTML
12

Total
12

Share

Search Panel