Skip to main content Skip to main navigation menu Skip to site footer

Characterization and evaluation of the hepatoprotective activity of α-mangostin isolate in diabetic rats

  • Devyana Dyah Wulandari ,
  • Andreas Putro Ragil Santoso ,
  • Sri Surya Suciati ,
  • Devyani Diah Wulansari ,
  • Ary Andini ,
  • Farach Khanifah ,

Abstract

Introduction: Isolation of α-mangostin (α-MG) from the rind extract of Garcinia mangostana L. showed antioxidant, anticancer, antidiabetic, and cytotoxic activities. The effectivity of a-mangosteen isolate compounds on hepatoprotective bioactivity in diabetic conditions has not been found. This study aimed to characterize α-MG isolate and evaluate its hepatoprotective activity in diabetic rats.

Methods: This research was a post-test-only control group design. This study used 36 rats which were divided into 6 groups, namely positive control group, negative control group, standard drug group, and treatment group with α-MG dose of 10 mg/kg body weight, 30 mg/kg body weight, and 50 mg/kg body weight. Hepatoprotective evaluation parameters examined included levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin and liver histopathology observations. Test the effect on the study using the One-Way ANOVA test.

Results: The results showed that a-mangosteen compound has a significant effect on levels of AST (p-value<0.05), ALT (p-value<0.05), ALP (p-value<0.05), and total bilirubin (p-value<0, 05), but there were no necrotic cells on the histopathological observation of the liver.

Conclusion: α-mangostin isolate from Garcinia mangostana L. has the potential as hepatoprotective in diabetic rats.

References

  1. Aljunaid M, Hariyani N, Roestamadji RI, Ridwan RD, Kusumaningsih T, Qaid HR. Recent updates of the oral benefits of mangosteen plant extracts: Review. J Int Dent Med Res. 2020;13(2):752–7.
  2. Asasutjarit R, Meesomboon T, Adulheem P, Kittiwisut S, Sookdee P, Samosornsuk W, et al. Physicochemical properties of alpha-mangostin loaded nanoemulsions prepared by ultrasonication technique. Heliyon. 2019;5(9):e02465. DOI: https://doi.org/10.1016/j.heliyon.2019.e02465.
  3. Kristanto Y, Hartono AR. Anti-diabetic properties of stevia rebaudiana Bertoni as sugar substitute: A mini-review. Bali Med J. 2021;10(1):189–93. DOI: http://dx.doi.org/10.15562/bmj.v10i1.2259.
  4. Liebe R, Esposito I, Bock HH, vom Dahl S, Stindt J, Baumann U, et al. Diagnosis and management of secondary causes of steatohepatitis. J Hepatol. 2021;74(6):1455–71. DOI: https://doi.org/10.1016/j.jhep.2021.01.045
  5. Fu T, Li H, Zhao Y, Cai E, Zhu H, Li P, et al. Hepatoprotective effect of α-mangostin against lipopolysaccharide/D-galactosamine-induced acute liver failure in mice. Biomed Pharmacother. 2018;106(July):896–901. DOI: https://doi.org/10.1016/j.biopha.2018.07.034
  6. Wulandari DD, Mufidah Z, Ersam T. Alpha Mangosteen Effect on MDA Level and the Pancreatic Morphology Rattus norvegicus ( Berkenhout , 1769 ) Induced by Alloxan. University of Surabaya Repository. 2020;57(4):13–9.
  7. Shrestha A, Neupane HC, Tamrakar KK, Bhattarai A, Katwal G. Role of liver enzymes in patients with blunt abdominal trauma to diagnose the liver injury. Int J Emerg Med. 2021;14(1):1–7. DOI: https://doi.org/10.1186/s12245-021-00332-1.
  8. Amang AP, Kodji E, Mezui C, Baane MP, Siwe GT, Kuissu TM, et al. Hepatoprotective Effects of Aqueous Extract of Opilia centifolia (Opiliaceae) Leaves against Ethanol-Induced Liver Damage in Rats. Evidence-based Complement Altern Med. 2020;2020. DOI: https://doi.org/10.1155%2F2020%2F6297475.
  9. Moosavinejad SM, Madhoushi M, Vakili M, Rasouli D. Evaluation of degradation in chemical compounds of wood in historical buildings using Ft-Ir And Ft-Raman vibrational spectroscopy. Maderas Cienc y Tecnol. 2019;21(3):381–92. DOI: http://dx.doi.org/10.4067/S0718-221X2019005000310.
  10. Kubovský I, Kačíková D, Kačík F. Structural changes of oak wood main components caused by thermal modification. Polymers (Basel). 2020;12(2). DOI: https://doi.org/10.3390/polym12020485.
  11. Coman LI, Coman OA, Bădărău IA, Păunescu H, Ciocîrlan M. Association between liver cirrhosis and diabetes mellitus: A review on hepatic outcomes. J Clin Med. 2021;10(2):1–16. DOI: https://doi.org/10.3390%2Fjcm10020262.
  12. Geidl-Flueck B, Hochuli M, Németh Á, Eberl A, Derron N, Köfeler HC, et al. Fructose- and sucrose- but not glucose-sweetened beverages promote hepatic de novo lipogenesis: A randomized controlled trial. J Hepatol. 2021;75(1):46–54. DOI: https://doi.org/10.1016/j.jhep.2021.02.027
  13. Longo M, Zatterale F, Naderi J, Parrillo L, Formisano P, Raciti GA, et al. Adipose tissue dysfunction as a determinant of obesity-associated metabolic complications. Int J Mol Sci. 2019;20(9). DOI: https://doi.org/10.3390/ijms20092358.
  14. Teshome G, Ambachew S, Fasil A, Abebe M. Prevalence of liver function test abnormality and associated factors in type 2 diabetes mellitus: A comparative cross-sectional study. Electron J Int Fed Clin Chem Lab Med. 2019;30(3):303–16.
  15. Aldana AJG, Tapias M, Mindiola AL. Diagnostic and therapeutic approach for cholestasis in the adult. Rev Colomb Gastroenterol. 2020;35(1):76–86. DOI: https://doi.org/10.22516/25007440.375.
  16. Sharifi-Rad M, Anil Kumar N V., Zucca P, Varoni EM, Dini L, Panzarini E, et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol. 2020;11(July):1–21. DOI: https://doi.org/10.3389/fphys.2020.00694.
  17. Flieger J, Flieger W, Baj J. Antioxidants : Classification, Natural Sources, Activity / Capacity. Materials (Basel). 2021;14(4135):1–54. DOI: https://doi.org/10.3390/ma14154135.
  18. Skenderian S, Park G, Jang C. Organismal fructose metabolism in health and non-alcoholic fatty liver disease. Biology (Basel). 2020;9(11):1–17. DOI: https://doi.org/10.3390%2Fbiology9110405.
  19. Schmidt NH, Svendsen P, Albarrán-Juárez J, Moestrup SK, Bentzon JF. High-fructose feeding does not induce steatosis or non-alcoholic fatty liver disease in pigs. Sci Rep. 2021;11(1):1–10. DOI: https://doi.org/10.1038/s41598-021-82208-1.

How to Cite

Devyana Dyah Wulandari, Andreas Putro Ragil Santoso, Sri Surya Suciati, Devyani Diah Wulansari, Ary Andini, & Farach Khanifah. (2023). Characterization and evaluation of the hepatoprotective activity of α-mangostin isolate in diabetic rats. Bali Medical Journal, 12(3), 3387–3391. https://doi.org/10.15562/bmj.v12i3.4453

HTML
4

Total
2

Share

Search Panel

Devyana Dyah Wulandari
Google Scholar
Pubmed
BMJ Journal


Andreas Putro Ragil Santoso
Google Scholar
Pubmed
BMJ Journal


Sri Surya Suciati
Google Scholar
Pubmed
BMJ Journal


Devyani Diah Wulansari
Google Scholar
Pubmed
BMJ Journal


Ary Andini
Google Scholar
Pubmed
BMJ Journal


Farach Khanifah
Google Scholar
Pubmed
BMJ Journal