Skip to main content Skip to main navigation menu Skip to site footer

The role of Resveratrol as a neuroprotective agent in the prevention of retinal ganglion cell loss in ischemic reperfusion injury animal model: a literature review

  • Amelia Shinta Prasetya ,
  • Evelyn Komaratih ,
  • Wimbo Sasono ,
  • Mercia Chrysanti ,
  • Maria Debora Niken Larasati ,
  • I Ketut Sudiana ,


Link of Video Abstract:


Background: Glaucoma is a progressive neurodegenerative disease characterized by glaucomatous optic neuropathy, including loss of retinal ganglion cells and axons. Optic neuropathy causes progressive vision loss and is managed by reducing intraocular pressure. However, even when the intraocular pressure has dropped to normal, the damage to the retinal ganglion cells may linger in certain situations. Thus, commence investigations on natural sources such as neuroprotection to prevent the loss of retinal ganglion cells.

Methods:  This literature review compiles and elaborates on previous studies to support future experimental studies that will be conducted to comprehend the effect of intravitreal Resveratrol as a glaucoma treatment to prevent the loss of retinal ganglion cells.

Results: Resveratrol is a naturally occurring phenol and phytoalexin detected in the skins of grapes and berries like raspberries, blueberries, and mulberries. Resveratrol inhibits the production of reactive oxygen species (ROS) and apoptosis as well as lengthens the life span of nerve cells via multiple mechanisms. Resveratrol treatment can reverse the progression of apoptosis, preserve mitochondrial membrane potential by reducing caspase-3, and inhibit cytochrome-C release, enhancing cell survival, as shown in many previous studies. Before the systemic administration of resveratrol in eye disease, it is necessary to consider the presence of the blood-ocular barrier—about 10 out of 35 eyes detected resveratrol in the conjunctiva after oral trans-resveratrol supplementation. Several studies have administered intravitreal injections of resveratrol to increase intraocular resveratrol concentrations.

Conclusion: Resveratrol may be utilized as an alternative adjuvant treatment for glaucoma due to its antioxidant and antiapoptosis properties.


  1. Delmas D, Cornebise C, Courtaut F, Xiao J, Aires V. New Highlights of Resveratrol: A Review of Properties against Ocular Diseases. Int J Mol Sci. 2021;22(3):1295.
  2. Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311(18):1901-1911
  3. Abu-Amero KK, Kondkar AA, Chalam KV. Resveratrol and Ophthalmic Diseases. Nutrients. 2016;8(4):200.
  4. Prakoeswa CRS, Rindiastuti Y, Wirohadidjojo YW, Komaratih E, Nurwasis, Dinaryati A, Lestari NMI, Rantam FA. Resveratrol promotes secretion of wound healing related growth factors of mesenchymal stem cells originated from adult and fetal tissues. Artif Cells Nanomed Biotechnol. 2020;48(1):1160-1167.
  5. Ardianto C, Budiatin AS, Sumartha INB, Nurrahmi N, Rahmadi M, Khotib J. Resveratrol ameliorates physical and psychological stress-induced depressive-like behavior. J Basic Clin Physiol Pharmacol. 2021;32(4):335-340.
  6. Gupta MP, Herzlich AA, Sauer T, Chan CC. Retinal Anatomy and Pathology. Dev Ophthalmol. 2016;55:7-17.
  7. Wetarini K, Dewi NMRP, Mahayani NMW. Acute angle closure glaucoma: Management in acute attack setting. Bali Medical Journal. 2020;9(1):386-389.
  8. Corral-Domenge C, de la Villa P, Mansilla A, Germain F. Tools and Biomarkers for the Study of Retinal Ganglion Cell Degeneration. Int J Mol Sci. 2022;23(8):4287.
  9. Maharani, Dewi PK, Prihatningtias R, Wildan A, Nugroho T, Limijadi EKS, et al. Aqueous Humour Malondialdehyde Level as Oxidative Stress Marker in Types of Glaucoma. Bali Medical Journal. 2022;11(1):103-105.
  10. Kementerian Kesehatan Republik Indonesia (Kemenkes RI). InfoDATIN Pusat Data dan Informasi Kementerian Kesehatan RI: Situasi dan Analisis Glaukoma. Pusat Data dan Informasi. 2015:1–6.
  11. Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL, Di Polo A. The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res. 2012;31(2):152-81.
  12. Ung L, Pattamatta U, Carnt N, Wilkinson-Berka JL, Liew G, White AJR. Oxidative stress and reactive oxygen species: a review of their role in ocular disease. Clin Sci (Lond). 2017;131(24):2865-2883.
  13. Shi T, van Soest DMK, Polderman PE, Burgering BMT, Dansen TB. DNA damage and oxidant stress activate p53 through differential upstream signaling pathways. Free Radic Biol Med. 2021;172:298-311.
  14. Winata A, Manuaba IBTW, Sudarsa IW, Mahadewa TGB. Association of P53 protein overexpression with clinicopathological features of oral squamous cell carcinoma patients in Bali. Bali Medical Journal. 2016;5(1):59-64.
  15. Aslan M, Dogan S, Kucuksayan E. Oxidative stress and potential applications of free radical scavengers in glaucoma. Redox Rep. 2013;18(2):76-87.
  16. Wu MY, Yiang GT, Liao WT, Tsai AP, Cheng YL, Cheng PW, et al. Current Mechanistic Concepts in Ischemia and Reperfusion Injury. Cell Physiol Biochem. 2018;46(4):1650-1667.
  17. Luo H, Zhuang J, Hu P, Ye W, Chen S, Pang Y, et al. Resveratrol Delays Retinal Ganglion Cell Loss and Attenuates Gliosis-Related Inflammation From Ischemia-Reperfusion Injury. Invest Ophthalmol Vis Sci. 2018;59(10):3879-3888.
  18. Luo J, He T, Yang J, Yang N, Li Z, Xing Y. SIRT1 is required for the neuroprotection of resveratrol on retinal ganglion cells after retinal ischemia-reperfusion injury in mice. Graefes Arch Clin Exp Ophthalmol. 2020;258(2):335-344.
  19. Pawlowski J, Kraft AS. Bax-induced apoptotic cell death. Proc Natl Acad Sci U S A. 2000;18;97(2):529-531.
  20. Kiraz Y, Adan A, Kartal Yandim M, Baran Y. Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol. 2016;37(7):8471-8486.
  21. Ji K, Li Z, Lei Y, Xu W, Ouyang L, He T, et al. Resveratrol attenuates retinal ganglion cell loss in a mouse model of retinal ischemia reperfusion injury via multiple pathways. Exp Eye Res. 2021;209:108683
  22. Pirhan D, Yüksel N, Emre E, Cengiz A, Kürşat Yıldız D. Riluzole- and Resveratrol-Induced Delay of Retinal Ganglion Cell Death in an Experimental Model of Glaucoma. Curr Eye Res. 2016;41(1):59-69.
  23. Sunaric Megevand G, Bron AM. Personalising surgical treatments for glaucoma patients. Prog Retin Eye Res. 2021;81:100879.
  24. Mohan N, Chakrabarti A, Nazm N, Mehta R, Edward DP. Newer advances in medical management of glaucoma. Indian J Ophthalmol. 2022;70(6):1920-1930.
  25. Russo R, Varano GP, Adornetto A, Nucci C, Corasaniti MT, Bagetta G, et al. Retinal ganglion cell death in glaucoma: Exploring the role of neuroinflammation. Eur J Pharmacol. 2016;787:134-142.
  26. Sim RH, Sirasanagandla SR, Das S, Teoh SL. Treatment of Glaucoma with Natural Products and Their Mechanism of Action: An Update. Nutrients. 2022;14(3):534.
  27. Balaiya S, Abu-Amero KK, Kondkar AA, Chalam KV. Sirtuins Expression and Their Role in Retinal Diseases. Oxid Med Cell Longev. 2017;2017:3187594.
  28. Singh CK, Chhabra G, Ndiaye MA, Garcia-Peterson LM, Mack NJ, Ahmad N. The Role of Sirtuins in Antioxidant and Redox Signaling. Antioxid Redox Signal. 2018;28(8):643-661.
  29. Xia J, Yang X, Chen W. Resveratrol protects the retina from I/R injury by inhibiting RGCS apoptosis, glial activation and expression of inflammatory factors. Tropical Journal of Pharmaceutical Research. 2020;19(6):1221-1226.
  30. Hartsock MJ, Cho H, Wu L, Chen WJ, Gong J, Duh EJ. A Mouse Model of Retinal Ischemia-Reperfusion Injury Through Elevation of Intraocular Pressure. J Vis Exp. 2016;(113):54065.
  31. Seong H, Ryu J, Yoo WS, Kim SJ, Han YS, Park JM, et al. Resveratrol Ameliorates Retinal Ischemia/Reperfusion Injury in C57BL/6J Mice via Downregulation of Caspase-3. Curr Eye Res. 2017;42(12):1650-1658.

How to Cite

Prasetya, A. S., Komaratih, E., Sasono, W., Chrysanti, M., Larasati, M. D. N., & Sudiana, I. K. (2023). The role of Resveratrol as a neuroprotective agent in the prevention of retinal ganglion cell loss in ischemic reperfusion injury animal model: a literature review. Bali Medical Journal, 12(2), 1796–1801.




Search Panel

Amelia Shinta Prasetya
Google Scholar
BMJ Journal

Evelyn Komaratih
Google Scholar
BMJ Journal

Wimbo Sasono
Google Scholar
BMJ Journal

Mercia Chrysanti
Google Scholar
BMJ Journal

Maria Debora Niken Larasati
Google Scholar
BMJ Journal

I Ketut Sudiana
Google Scholar
BMJ Journal