Skip to main content Skip to main navigation menu Skip to site footer

Umbilical cord-derived mesenchymal stem cell for reducing neointimal hyperplasia: a literature review – exploring possible therapeutic use on arteriovenous fistula patient

  • Yopie Afriandi Habibie ,
  • Dessy Rakhmawati Emril ,
  • Azharuddin ,
  • Dedy Syahrizal ,

Abstract

Link of Video Abstract: https://youtu.be/2uoN5ciMk14

 

Umbilical cord mesenchymal stem cells have been shown to reduce neointimal hyperplasia in animal models. However, current studies about therapeutic use to reduce neointimal hyperplasia mainly utilized bone-marrow and adipose tissue-derived mesenchymal stem cells and lack of in vivo testing from umbilical cord mesenchymal stem cells. Herein, we explore the potential of the therapeutic use of umbilical cord-derived mesenchymal stem cells to reduce neointimal hyperplasia in patients with arteriovenous fistula. Studies were identified from Scopus, Pubmed, and Google Scholar published between 2000 and 2022. The inclusion criteria for the articles were: (1) written in English, (2) focused on the use of mesenchymal stem cells (MSCs) for the treatment of neointimal hyperplasia, and (3) animal-controlled studies. Exosome-derived from mesenchymal stem cell studies were excluded. A total of 9 articles were included. Overall, the available evidence suggests that UC-MSCs may be a promising therapeutic option for reducing neointimal hyperplasia in arteriovenous fistula (AVF) patients. However, more research is needed to confirm these findings and to determine the optimal dosing and administration for their use in clinical practice. Additionally, further studies are required to fully understand the standardization in isolating and characterizing UC-MSCs and their effects on neointimal hyperplasia.

References

  1. Xie Q, Liu R, Jiang J, Peng J, Yang C, Zhang W, et al. What is the impact of human umbilical cord mesenchymal stem cell transplantation on clinical treatment?. Stem Cell Res Ther. 2020;11(1):1–13.
  2. Sadaghianloo N, Contenti J, Dardik A, Mazure NM. Role of hypoxia and metabolism in the development of neointimal hyperplasia in arteriovenous fistulas. Int J Mol Sci. 2019;20(21):5387.
  3. Rekhi U, Piche JE, Immaraj L, Febbraio M. Neointimal hyperplasia. Curr Opin Lipidol. 2022;30(5):377–382.
  4. Al-Jaishi AA, Oliver MJ, Thomas SM, Lok CE, Zhang JC, Garg AX, et al. Patency rates of the arteriovenous fistula for hemodialysis: A systematic review and meta-analysis. American Journal of Kidney Diseases. 2014;63(3):464–478.
  5. Duque JC, Tabbara M, Martinez L, Cardona J, Vazquez-Padron RI, Salman LH. Dialysis arteriovenous fistula failure and angioplasty: intimal hyperplasia and other causes of access failure. Am J Kidney Dis. 2017;69(1):147.
  6. MacAskill MG, Watson DG, Ewart MA, Wadsworth R, Jackson A, Aitken E, et al. Improving arteriovenous fistula patency: transdermal delivery of diclofenac reduces cannulation-dependent neointimal hyperplasia via AMPK activation. Vascul Pharmacol. 2015;71:108.
  7. Rienstra H, Zeebregts CJ, Hillebrands JL. The source of neointimal cells in vein grafts: Does the origin matter? American Journal of Pathology. 2008;172(3):566–570.
  8. Segal M, Qaja E. Types of arteriovenous fistulas. StatPearls [Internet]. 2022 Aug 8 [cited 2023 Jan 9]; Available from: https://www.ncbi.nlm.nih.gov/books/NBK493195/
  9. Brahmbhatt A, Remuzzi A, Franzoni M, Misra S. The molecular mechanisms of hemodialysis vascular access failure. Kidney Int. 2016;89(2):303–316.
  10. Yogi A, Rukhlova M, Charlebois C, Tian G, Stanimirovic DB, Moreno MJ. Differentiation of adipose-derived stem cells into vascular smooth muscle cells for tissue engineering applications. Biomedicines. 2021;9(7):797.
  11. Ni H, Liu C, Chen Y, Lu Y, Ji Y, Xiang M, et al. MGP regulates perivascular adipose-derived stem cells differentiation toward smooth muscle cells via BMP2/SMAD pathway enhancing neointimal formation. cell transplant. 2022;31: 9636897221075747.
  12. Yang B, Brahmbhatt A, Torres EN, Thielen B, McCall DL, Engel S, et al. Tracking and therapeutic value of human adipose tissue–derived mesenchymal stem cell transplantation in reducing venous neointimal hyperplasia associated with arteriovenous fistula. Radiology. 2016;279(2):513–522.
  13. Iso Y, Usui S, Toyoda M, Spees JL, Umezawa A, Suzuki H. Bone marrow-derived mesenchymal stem cells inhibit vascular smooth muscle cell proliferation and neointimal hyperplasia after arterial injury in rats. Biochem Biophys Rep. 2018;16:79–87.
  14. Shoji M, Koba S, Kobayashi Y. Roles of bone-marrow-derived cells and inflammatory cytokines in neointimal hyperplasia after vascular injury. Biomed Res Int. 2014;2014: 945127.
  15. Shoji M, Oskowitz A, Malone CD, Prockop DJ, Pochampally R. Human mesenchymal stromal cells (MSCs) reduce neointimal hyperplasia in a mouse model of flow-restriction by transient suppression of anti-inflammatory cytokines. J Atheroscler Thromb. 2011;18(6):464–474.
  16. Chen D, Weber M, Shiels PG, Dong R, Webster Z, Mcvey JH, et al. Postinjury vascular intimal hyperplasia in mice is completely inhibited by CD34+ bone marrow-derived progenitor cells expressing membrane-tethered anticoagulant fusion proteins. J Thromb Haemost. 2006;4(10):2191–2198.
  17. Galipeau J, Sensébé L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell. 2018;22(6):824–833.
  18. Song N, Scholtemeijer M, Shah K. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential. Trends Pharmacol Sci. 2020;41(9):653.
  19. Ruan ZB, Chen GC, Zhang R, Zhu L. Circular RNA expression profiles during the differentiation of human umbilical cord–derived mesenchymal stem cells into cardiomyocyte-like cells. J Cell Physiol. 2019;234(9):16412–16423.
  20. Zhu B, Zhang L, Liang C, Liu B, Pan X, Wang Y, et al. Stem cell-derived exosomes prevent aging-induced cardiac dysfunction through a novel exosome/lncRNA MALAT1/NF-κB/TNF-α signaling pathway. Oxid Med Cell Longev. 2019;2019: 9739258.
  21. Yu C, Yang K, Meng X, Cao B, Wang F. Downregulation of long noncoding RNA MIAT in the retina of diabetic rats with tail-vein injection of human umbilical-cord mesenchymal stem cells. Int J Med Sci. 2020;17(5):591–598.
  22. Zhu S, Malhotra A, Zhang L, Deng S, Zhang T, Freedman NJ, et al. Human umbilical cord blood endothelial progenitor cells decrease vein graft neointimal hyperplasia in SCID mice. Atherosclerosis. 2010;212(1):63–69.
  23. Chen D, Weber M, Shiels PG, Dong R, Webster Z, McVey JH, et al. Postinjury vascular intimal hyperplasia in mice is completely inhibited by CD34+ bone marrow-derived progenitor cells expressing membrane-tethered anticoagulant fusion proteins. Journal of Thrombosis and Haemostasis. 2006;4(10):2191–2198.
  24. Isoda K, Akita K, Isobe S, Niida T, Adachi T, Iwakura Y, et al. Interleukin-1 receptor antagonist originating from bone marrow-derived cells and non-bone marrow-derived cells help to suppress arterial inflammation and reduce neointimal formation after injury. J Atheroscler Thromb. 2014;21(11):1208–1218.
  25. Shoji M, Oskowitz A, Malone CD, Prockop DJ, Pochampally R. Human mesenchymal stromal cells (MSCs) reduce neointimal hyperplasia in a mouse model of flow-restriction by transient suppression of anti-inflammatory cytokines. J Atheroscler Thromb. 2011;18(6):464–474.
  26. Iso Y, Usui S, Toyoda M, Spees JL, Umezawa A, Suzuki H. Bone marrow-derived mesenchymal stem cells inhibit vascular smooth muscle cell proliferation and neointimal hyperplasia after arterial injury in rats. Biochem Biophys Rep. 2018;16:79–87.
  27. Feng J, Liu JP, Miao L, He GX, Li D, Wang HD, et al. Conditional expression of the type 2 angiotensin ii receptor in mesenchymal stem cells inhibits neointimal formation after arterial injury. J Cardiovasc Transl Res. 2014;7(7):635–643.
  28. Yang B, Brahmbhatt A, Nieves Torres E, Thielen B, McCall DL, Engel S, et al. Tracking and therapeutic value of human adipose tissue–derived mesenchymal stem cell transplantation in reducing venous neointimal hyperplasia associated with arteriovenous fistula. Radiology. 2016;279(2):513–522.
  29. Ni H, Liu C, Chen Y, Lu Y, Ji Y, Xiang M, et al. MGP regulates perivascular adipose-derived stem cells differentiation toward smooth muscle cells via BMP2/SMAD pathway enhancing neointimal formation. cell transplant. 2022;31:096368972210757.
  30. Kim AK, Kim MH, Kim DH, Go HN, Cho SW, Um SH, et al. Inhibitory effects of mesenchymal stem cells in intimal hyperplasia after balloon angioplasty. J Vasc Surg. 2016;63(2):510–517.
  31. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294–1301.
  32. Jin H, Bae Y, Kim M, Kwon SJ, Jeon H, Choi S, et al. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int J Mol Sci. 2013;14(9):17986–18001.
  33. Wu Y, Zhao RCH, Tredget EE. Concise review: bone marrow-derived stem/progenitor cells in cutaneous repair and regeneration. Stem Cells. 2010;28(5):905–915.
  34. Fu, Liu, Halim, Ju, Luo, Song. Mesenchymal stem cell migration and tissue repair. Cells. 2019;8(8):784.
  35. Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells. 2007;25(11):2896–2902.
  36. Marfia G, Navone SE, di Vito C, Ughi N, Tabano S, Miozzo M, et al. Mesenchymal stem cells: potential for therapy and treatment of chronic non-healing skin wounds. Organogenesis. 2015;11(4):183–206.
  37. Arutyunyan I, Elchaninov A, Makarov A, Fatkhudinov T. Umbilical cord as prospective source for mesenchymal stem cell-based therapy. Stem Cells Int. 2016;2016:1–17.
  38. Ding DC, Chang YH, Shyu WC, Lin SZ. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transplant. 2015;24(3):339–347.
  39. Mebarki M, Abadie C, Larghero J, Cras A. Human umbilical cord-derived mesenchymal stem/stromal cells: a promising candidate for the development of advanced therapy medicinal products. Stem Cell Res Ther. 2021;12(1):152.
  40. Bongso A, Fong CY. The Therapeutic potential, challenges and future clinical directions of stem cells from the wharton’s jelly of the human umbilical cord. Stem Cell Rev Rep. 2013;9(2):226–240.
  41. Fan CG, Zhang Q jun, Zhou JR. Therapeutic potentials of mesenchymal stem cells derived from human umbilical cord. Stem Cell Rev Rep. 2011 Mar 30;7(1):195–207.
  42. Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25(11):2739–2749.
  43. Yogi A, Rukhlova M, Charlebois C, Tian G, Stanimirovic DB, Moreno MJ. Differentiation of adipose-derived stem cells into vascular smooth muscle cells for tissue engineering applications. Biomedicines. 2021;9(7):797.
  44. Shi B, Long X, Zhao R, Liu Z, Wang D, Xu G. Transplantation of mesenchymal stem cells carrying the human receptor activity-modifying protein one gene improves cardiac function and inhibits neointimal proliferation in the carotid angioplasty and myocardial infarction rabbit model. Exp Biol Med. 2014;239(3):356–365.
  45. Wang CH, Cherng WJ, Yang NI, Kuo LT, Hsu CM, Yeh HI, et al. Late-outgrowth endothelial cells attenuate intimal hyperplasia contributed by mesenchymal stem cells after vascular injury. Arterioscler Thromb Vasc Biol. 2008;28(1):54–60.
  46. Kartika RW, Sidharta VM, Djuartina T, Rika I, Sartika CR, Timotius KR. Role of myostatin protein in sarcopenia (aging muscle) after conditioned medium umbilical cord mesenchymal stem cells (secretome) therapy: mini review. Bali Med J. 2022;12(1):7-10.
  47. Herminawati L, Wijaya A, Arief M, As’ad S. Dynamics of human mesenchymal stem cells, M1 microglia/macrophage, and fractalkine in ischemic stroke patients. Bali Med J. 2016;5(1):56-58.
  48. Hongyu D, Zhiping G, Yongdong L, Dan L, Xiaochun C. Effects of bone marrow mesenchymal stem cell transplantation on vascular remolding and restenosis after angioplasty in hyperlipoidemia rat. Heart. 2011;97(Suppl 3):A36–A36.

How to Cite

Habibie, Y. A., Emril, D. R., Azharuddin, & Syahrizal, D. . (2023). Umbilical cord-derived mesenchymal stem cell for reducing neointimal hyperplasia: a literature review – exploring possible therapeutic use on arteriovenous fistula patient. Bali Medical Journal, 12(3), 1993–1998. https://doi.org/10.15562/bmj.v12i3.4448

HTML
5

Total
1

Share

Search Panel

Yopie Afriandi Habibie
Google Scholar
Pubmed
BMJ Journal


Dessy Rakhmawati Emril
Google Scholar
Pubmed
BMJ Journal


Azharuddin
Google Scholar
Pubmed
BMJ Journal


Dedy Syahrizal
Google Scholar
Pubmed
BMJ Journal