Skip to main content Skip to main navigation menu Skip to site footer

Intravitreal triamcinolone acetonide and bevacizumab injection as prevention of proliferative vitreoretinopathy in open globe injury

  • Kautsar Abiyoga ,
  • Yulia Primitasari ,
  • Delfitri Lutfi ,

Abstract

Link of Video Abstract: https://youtu.be/VVibnyUdBx4

Background: Proliferative vitreoretinopathy (PVR) is common following an open globe injury (OGI) due to aberrant wound healing that can result in retinal detachment or vitreous hemorrhage. Despite the anatomical success, visual acuity improvement remains unsatisfactory. Triamcinolone acetonide (TCA) and Bevacizumab are among these therapies. This study aims to explore the effect of TCA and Bevacizumab intravitreal injection as potential preventive therapies for PVR in OGI.

Methods: This literature review compiles and elaborates on previous studies from many authors to support future experimental studies, which will be conducted to evaluate the intravitreal triamcinolone acetonide and bevacizumab injection as prevention of proliferative vitreoretinopathy in open globe injury through several relevant articles.

Results: The healing process requires inflammation that stimulates inflammatory cells and mediators, such as transforming growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α), vascular endothelial growth factor (VEGF), interleukin-1 (IL-1), IL-2, IL-3, IL-6, IL-8, and IL-10. Plasminogen activator inhibitor-1 (PAI) is upregulated during inflammation, resulting in continued collagen deposition due to fibrosis. The injection of corticosteroids as immunosuppressants and anti-VEGFs as antiangiogenesis is thought to have a positive impact by reducing inflammation and the development of new blood vessels, thus suppressing fibrosis.

Conclusion: TCA injection was associated with improved anatomical and visual acuity in humans, pre-operatively or during pars plana vitrectomy. Anti-VEGFs, such as Bevacizumab, ranibizumab, conbercept, and aflibercept, demonstrated protective effects on the eyes of animal models and showed their ability to reduce VEGF, TGF-β, and PAI-1, thereby inhibiting wound fibrosis.

References

  1. Zhao X, Han H, Song Y, Du M, Liao M, Dong X, et al. The Role of Intravitreal Anti-VEGF Agents in Rabbit Eye Model of Open-Globe Injury. J Ophthalmol. 2021;2021: 5565178.
  2. Mehdizadeh M, Fattahi F, Eghtedari M, Nowroozzadeh MH, Toosi F. The role of intravitreal Bevacizumab in experimental posterior penetrating eye injury. Retina. 2011;31(1):154-160.
  3. Morescalchi F, Duse S, Gambicorti E, Romano MR, Costagliola C, Semeraro F. Proliferative vitreoretinopathy after eye injuries: an overexpression of growth factors and cytokines leading to a retinal keloid. Mediators Inflamm. 2013;2013:269787.
  4. Riandika M, Komaratih E, Widjaja S. Kadar Transforming Growth Factor Beta (TGF-β2) dan Tumor Necrosis Factor Alpha (TNF-α) di Cairan Subretina pada Proliferative Vitreoretinopathy Grade B-C Setelah Pemberian Terapi Adjuvan Deksametason Subkonjungtiva [Tesis]. Fakultas Kedokteran Universitas Airlangga. 2019.
  5. Ghoraba HH, Leila M, Elgouhary SM, Elgemai EEM, Abdelfattah HM, Ghoraba HH, et al. Safety of high-dose intravitreal triamcinolone acetonide as low-cost alternative to anti-vascular endothelial growth factor agents in lower-middle-income countries. Clinical Ophthalmology. 2018;12:2383–91.
  6. Brar V, Law S, Lindsey J, Mackey D, Schultze R, Silverstein E, et al. The Eye. In: Fundamentals and Principles of Ophthalmology BCSC 2020-2021. San Franscisco: American Academy of Ophthalmology. 2021:47–104.
  7. McCannel C, Berrocal A, Holder G, Kim S, Leonard B, Rosen R, et al. Basic Anatomy. In: Retina and Vitreous BCSC 2020-2021. San Francisco: American Academy of Ophthalmology. 2021:7–20.
  8. Stewart M. Diabetic Retinopathy: Current Pharmacologic Treatment and Emerging Strategies. Singapore: Springer Nature Singapore. 2017: 29–186.
  9. Mahabadi N, Al Khalili Y. Neuroanatomy, Retina. In: StatPearls. Treasure Island (FL): StatPearls Publishing, 2022.
  10. Kuhn F, Morris R, Witherspoon CD, Mester V. The Birmingham Eye Trauma Terminology system (BETT). J Fr Ophtalmol. 2004;27(2):206-210.
  11. Choovuthayakorn J, Worakriangkrai V, Patikulsila D, Watanachai N, Kunavisarut P, Chaikitmongkol V, et al. Epidemiology of Eye Injuries Resulting in Hospitalization, a Referral Hospital-Based Study. Clin Ophthalmol. 2020;14:1-6.
  12. Raja S, Pieramici D. Classification of Ocular Trauma. In: Ocular Trauma-Principle and Practice. New York: Springer US. 2008:6–9.
  13. Zhang X, Liu Y, Ji X, Zou Y. A Retrospective Study on Clinical Features and Visual Outcome of Patients Hospitalized for Ocular Trauma in Cangzhou, China. J Ophthalmol. 2017;2017:7694913.
  14. Zungu T, Mdala S, Manda C, Twabi HS, Kayange P. Characteristics and visual outcome of ocular trauma patients at Queen Elizabeth Central Hospital in Malawi. PLoS One. 2021;16(3):e0246155.
  15. Banerjee PJ, Xing W, Bunce C, Woodcock M, Chandra A, Scott RAH, et al. Triamcinolone during pars plana vitrectomy for open globe trauma: A pilot randomised controlled clinical trial. British Journal of Ophthalmology. 2016;100(7):949–955.
  16. Schwartz S, Mieler W. Management of Eyes with Perforating Injury. In: Ocular Trauma-Principle and Practice. New York: Springer USA. 2008:273–279.
  17. Siddiqui N, Chen EM, Parikh R, Douglas VP, Douglas KA, Feng PW, et al. Epidemiology of United States Inpatient Open Globe Injuries from 2009-2015. Ophthalmic Epidemiol. 2021;28(6):469-478.
  18. Ceklic L, Latinovic S, Neubauer AS, Obucina D, Petrovic B. Management and treatment of bizarre open globe trauma in three steps: A case report. Int J Ophthalmol. 2011;4(2):218–9.
  19. Gupta B, Sian I, Agrawal R. Ophthalmic trauma: risk and management update. Expert Review of Ophtalmology. 2014;9(4):315–329.
  20. Agrawal R, Shah M, Mireskandari K, Yong GK. Controversies in ocular trauma classification and management: review. Int Ophthalmol. 2013;33(4):435-445.
  21. Kah-Guan Au Eong, Kent D, Pieramici D. Vitreous and Retina. In: Ocular Trauma-Principle and Practice. New York: Springer US. 2008:206–234.
  22. Cassen JH. Ocular trauma. Hawaii Med J. 1997;56(10):292-294.
  23. Banerjee PJ, Woodcock MG, Bunce C, Scott R, Charteris DG. A pilot study of intraocular use of intensive anti-inflammatory; triamcinolone acetonide to prevent proliferative vitreoretinopathy in eyes undergoing vitreoretinal surgery for open globe trauma; the Adjuncts in Ocular Trauma (AOT) Trial: study protocol for a randomised controlled trial. Trials. 2013;14:42.
  24. Moysidis SN, Thanos A, Vavvas DG. Mechanisms of inflammation in proliferative vitreoretinopathy: from bench to bedside. Mediators Inflamm. 2012;2012:815937.
  25. Tosi GM, Marigliani D, Romeo N, Toti P. Disease pathways in proliferative vitreoretinopathy: an ongoing challenge. J Cell Physiol. 2014;229(11):1577-1583.
  26. Zandi S, Pfister IB, Traine PG, Tappeiner C, Despont A, Rieben R, et al. Biomarkers for PVR in rhegmatogenous retinal detachment. PLoS One. 2019;14(4):e0214674.
  27. Kim HM, Woo SJ. Ocular Drug Delivery to the Retina: Current Innovations and Future Perspectives. Pharmaceutics. 2021;13(1):108.
  28. Fung AT, Tran T, Lim LL, Samarawickrama C, Arnold J, Gillies M, et al. Local delivery of corticosteroids in clinical ophthalmology: A review. Clin Exp Ophthalmol. 2020;48(3):366-401.
  29. Moya F, Mickler C, Quiros P. The Healing Process. In: Basic Principle of Ophthalmic Surgery. 4th Edition. San Francisco: American Academy of Ophthalmology; 2019:229–246.
  30. Singh S, Young A, McNaught CE. The physiology of wound healing. Surgery: Basic Science. 2017;35(9):473–477.
  31. Uluer E, Vatansever HS, Kurt F. Wound Healing and Microenvironment. In: Turksen K, editor. Wound Healing. Hoboken: Wiley Blackwell. 2018:67–78.
  32. de Groot H, Schmit-Eilenberger V, Kirchhof J, Augustin AJ. Angiostatic and angiogenic factors. Dev Ophthalmol. 2010;46:1-3.
  33. Than UTT, Guanzon D, Leavesley D, Parker T. Association of Extracellular Membrane Vesicles with Cutaneous Wound Healing. Int J Mol Sci. 2017;18(5):956.
  34. Lipson KE, Wong C, Teng Y, Spong S. CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair. 2012;5(Suppl 1):S24. Published 2012 Jun 6. doi:10.1186/1755-1536-5-S1-S24
  35. Wiedemann P, Bringmann A. Proliferative Vitreoretinopathy. Klin Monbl Augenheilkd. 2016;233(9):1012-1015.
  36. Di Lauro S, Kadhim MR, Charteris DG, Pastor JC. Classifications for Proliferative Vitreoretinopathy (PVR): An Analysis of Their Use in Publications over the Last 15 Years. J Ophthalmol. 2016;2016:7807596.
  37. Pastor JC, Rojas J, Pastor-Idoate S, Di Lauro S, Gonzalez-Buendia L, Delgado-Tirado S. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical consequences. Prog Retin Eye Res. 2016;51:125-155.
  38. Pennock S, Haddock LJ, Mukai S, Kazlauskas A. Vascular endothelial growth factor acts primarily via platelet-derived growth factor receptor α to promote proliferative vitreoretinopathy. Am J Pathol. 2014;184(11):3052-3068.
  39. Pastor JC, Fernández I, Coco RM, Sanabria MR, Rodríguez de la Rúa E, Piñon RM, et al. Variations in Functional and Anatomical Outcomes and in Proliferative Vitreoretinopathy Rate along a Prospective Collaborative Study on Primary Rhegmatogenous Retinal Detachments: The Retina 1 Project-Report 4. ISRN Ophthalmol. 2012;2012:206385.
  40. Oner A, Kahraman N, Ozdamar S, Balcioglu E. Comparison of the effects of intravitreal Bevacizumab and dexamethasone in experimental posterior penetrating eye injury. Int J Ophthalmol. 2018;11(4):575–579.
  41. Dai Y, Dai C, Sun T. Inflammatory mediators of proliferative vitreoretinopathy: hypothesis and review. Int Ophthalmol. 2020;40(6):1587-1601.
  42. Rojas J, Fernandez I, Pastor JC, Maclaren RE, Ramkissoon Y, Harsum S, et al. A genetic case-control study confirms the implication of SMAD7 and TNF locus in the development of proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci. 2013;54(3):1665-1678.
  43. Chiba C. The retinal pigment epithelium: an important player of retinal disorders and regeneration. Exp Eye Res. 2014;123:107-114.
  44. Idrees S, Sridhar J, Kuriyan AE. Proliferative Vitreoretinopathy: A Review. Int Ophthalmol Clin. 2019;59(1):221-240.
  45. Cesari M, Pahor M, Incalzi RA. Plasminogen activator inhibitor-1 (PAI-1): a key factor linking fibrinolysis and age-related subclinical and clinical conditions. Cardiovasc Ther. 2010;28(5):e72-e91.
  46. Ma LJ, Fogo AB. PAI-1 and kidney fibrosis. Front Biosci (Landmark Ed). 2009;14(6):2028-2041.
  47. Saika S. TGFbeta pathobiology in the eye. Lab Invest. 2006;86(2):106-115.
  48. Kita T, Hata Y, Arita R, Kawahara S, Miura M, Nakao S, et al. Role of TGF-beta in proliferative vitreoretinal diseases and ROCK as a therapeutic target. Proc Natl Acad Sci U S A. 2008;105(45):17504-17509.
  49. Kuznetsova AV, Kurinov AM, Aleksandrova MA. Cell models to study regulation of cell transformation in pathologies of retinal pigment epithelium. J Ophthalmol. 2014;2014:801787.
  50. Hidayati R. Perbedaan Kadar Transforming Growth Factor Beta-2 Intravitreal pada berbagai Derajat Proliferative Vitreoretinopathy Rhegmatogenous Retinal Detachment [Tesis]. Fakultas Kedokteran Universitas Airlangga:Surabaya. 2016.
  51. Pennock S, Haddock LJ, Eliott D, Mukai S, Kazlauskas A. Is neutralizing vitreal growth factors a viable strategy to prevent proliferative vitreoretinopathy?. Prog Retin Eye Res. 2014;40:16-34.
  52. Tao Y, Jonas JB. Intravitreal triamcinolone. Ophthalmologica. 2011;225(1):1-20.
  53. Fernandes-Cunha GM, Saliba JB, Siqueira RC, Jorge R, Silva-Cunha A. Determination of triamcinolone acetonide in silicone oil and aqueous humor of vitrectomized rabbits' eyes: Application for a pharmacokinetic study with intravitreal triamcinolone acetonide injections (Kenalog® 40). J Pharm Biomed Anal. 2014;89:24-27.
  54. Shen L, Mao J, Sun S, Dong Y, Chen Y, Cheng L. Perioperative pharmacological management of choroidal detachment associated with rhegmatogenous retinal detachment. Acta Ophthalmol. 2016;94(4):391-396.
  55. Dierks D, Lei B, Zhang K, Hainsworth DP. Electroretinographic effects of an intravitreal injection of triamcinolone in rabbit retina. Arch Ophthalmol. 2005;123(11):1563-1569.
  56. Oishi M, Maeda S, Hashida N, Ohguro N, Tano Y, Kurokawa N. Pharmacokinetic behavior of intravitreal triamcinolone acetonide prepared by a hospital pharmacy. Jpn J Ophthalmol. 2008;52(6):489–492.
  57. Ren Y, Du S, Zheng D, Shi Y, Pan L, Yan H. Intraoperative intravitreal triamcinolone acetonide injection for prevention of postoperative inflammation and complications after phacoemulsification in patients with uveitic cataract. BMC Ophthalmol. 2021;21(1):245.
  58. Porta M, Striglia E. Intravitreal anti-VEGF agents and cardiovascular risk. Intern Emerg Med. 2020;15(2):199-210.
  59. Siemerink MJ, Augustin AJ, Schlingemann RO. Mechanisms of ocular angiogenesis and its molecular mediators. Dev Ophthalmol. 2010;46:4-20.
  60. Tremolada G, Del Turco C, Lattanzio R, Maestroni S, Maestroni A, Bandello F, et al. The role of angiogenesis in the development of proliferative diabetic retinopathy: impact of intravitreal anti-VEGF treatment. Exp Diabetes Res. 2012;2012:728325.
  61. Cox JT, Eliott D, Sobrin L. Inflammatory Complications of Intravitreal Anti-VEGF Injections. J Clin Med. 2021;10(5):981.
  62. Falavarjani KG, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye (Lond). 2013;27(7):787-794.
  63. Schmidt-Erfurth U, Pollreisz A, Mitsch C, Bolz M. Antivascular Endothelial Growth Factors in Age-Related Macular Degeneration. In: Anti-VEGF. Basel: Kerger. 2010:21–38.
  64. Parodi MB, Iacono P, Bandello F. Antivascular Endothelial Growth Factor for Choroidal Neovascularization in Pathologic Myopia. In: Anti-VEGF. Basel: Kerger. 2010:73–83.
  65. Iacono P, Parodi MB, Bandello F. Antivascular Endothelial Growth Factor in Diabetic Retinopathy. In: Anti-VEGF. Basel: Karger. 2010:39–53.
  66. Andrés-Guerrero V, Perucho-González L, García-Feijoo J, Morales-Fernández L, Saenz-Francés F, Herrero-Vanrell R, et al. Current Perspectives on the Use of Anti-VEGF Drugs as Adjuvant Therapy in Glaucoma. Adv Ther. 2017;34(2):378-395.
  67. Boyer D, Friberg T. Safety of Anti-VEGF Therapy. In: Therapy for Ocular Angiogenesis. Philadelphia: Lippincott Williams & Wilkins. 2011:132–139.
  68. Smith JM, Steel DH. Anti-vascular endothelial growth factor for prevention of postoperative vitreous cavity haemorrhage after vitrectomy for proliferative diabetic retinopathy. Cochrane Database Syst Rev. 2015;2015(8):CD008214.
  69. Dinc E, Yildirim O, Necat Yilmaz S, Canacankatan N, Ayaz L, Ozcan T, et al. Intravitreal bevacizumab effects on VEGF levels in distant organs: An experimental study. Cutan Ocul Toxicol. 2014;33(4):275–82.
  70. Sankar MJ, Sankar J, Mehta M, Bhat V, Srinivasan R. Anti-vascular endothelial growth factor (VEGF) drugs for treatment of retinopathy of prematurity. Cochrane Database Syst Rev. 2016;2:CD009734.
  71. Zhao Y, Singh RP. The role of anti-vascular endothelial growth factor (anti-VEGF) in the management of proliferative diabetic retinopathy. Drugs Context. 2018;7:212532.
  72. Fidianto A, Komaratih E, Sasono W, Sandhika W, Notobroto HB. Intracameral injection of limbal mesenchymal stem cells secretome alleviate inflammation with delayed structural recovery on corneal endothelial cells in phacoemulsified rabbit eyes. Biochem Cell Arch. 2019;19(Suppl 2):4729–4736.
  73. Ahn SJ, Hong HK, Na YM, Park SJ, Ahn J, Oh J, et al. Use of Rabbit Eyes in Pharmacokinetic Studies of Intraocular Drugs. J Vis Exp. 2016;(113):53878.
  74. Maulana Firmansyah A, Zuhria I, Nurwasis N. The Effect of Limbal Mesenchymal Stem Cell Secretome Eyedrops for Wound Healing in Pseudomonas aeruginosa Keratitis. International Journal of Research Publications. 2021;84(1):104-110.
  75. Bogan CM, Pierce JM, Doss SD, Tao YK, Chen SC, Boyd KL, et al. Intravitreal melphalan hydrochloride vs propylene glycol-free melphalan for retinoblastoma vitreous seeds: Efficacy, toxicity and stability in rabbits models and patients. Exp Eye Res. 2021;204:108439.
  76. Zernii EY, Baksheeva VE, Iomdina EN, Averina OA, Permyakov SE, Philippov PP, et al. Rabbit Models of Ocular Diseases: New Relevance for Classical Approaches. CNS Neurol Disord Drug Targets. 2016;15(3):267-291.
  77. Moon SW, Sun Y, Warther D, Huffman K, Freeman WR, Sailor MJ, et al. New model of proliferative vitreoretinopathy in rabbit for drug delivery and pharmacodynamic studies. Drug Deliv. 2018;25(1):600–610.
  78. Los LI. The rabbit as an animal model for post-natal vitreous matrix differentiation and degeneration. Eye (Lond). 2008;22(10):1223-1232.
  79. Agrawal RN, He S, Spee C, Cui JZ, Ryan SJ, Hinton DR. In vivo models of proliferative vitreoretinopathy. Nat Protoc. 2007;2(1):67–77.
  80. Greene W, Burke T, Bramblett G, Wang HC. Detection of Retinal Fibrosis in a Rabbit Model of Penetrating Eye Injury. Mil Med. 2020;185(Suppl 1):443-447.
  81. Sinapis CI, Routsias JG, Sinapis AI, Sinapis DI, Agrogiannis GD, Pantopoulou A, et al. Pharmacokinetics of intravitreal Bevacizumab (Avastin®) in rabbits. Clinical Ophthalmology. 2011;5(1):697–704.
  82. Kim H, Csaky KG, Gravlin L, Yuan P, Lutz RJ, Bungay PM, et al. Safety and pharmacokinetics of a preservative-free triamcinolone acetonide formulation for intravitreal administration. Retina. 2006;26(5):523-530.
  83. Albini TA, Abd-El-Barr MM, Carvounis PE, Iyer MN, Lakhanpal RR, Pennesi ME, et al. Long-term retinal toxicity of intravitreal commercially available preserved triamcinolone acetonide (Kenalog) in rabbit eyes. Invest Ophthalmol Vis Sci. 2007;48(1):390-395.
  84. Roth DB, Flynn HW Jr. Distinguishing between infectious and noninfectious endophthalmitis after intravitreal triamcinolone injection. Am J Ophthalmol. 2008;146(3):346-347.
  85. Ye Z, Ji YL, Ma X, Wen JG, Wei W, Huang SM. Pharmacokinetics and distributions of Bevacizumab by intravitreal injection of Bevacizumab- PLGA microspheres in rabbits. Int J Ophthalmol. 2015;8(4):653–658.
  86. Kels BD, Grzybowski A, Grant-Kels JM. Human ocular anatomy. Clin Dermatol. 2015;33(2):140-146.
  87. Pratiwi A, Ichsan AM, Muhiddin HS. Ganglion Cell Complex thickness as an early predictor of microstructural changes in varying degrees of myopia in comparison with Retinal Nerve Fiber Layer (RNFL) thickness. Bali Medical Journal. 2018;7(2):1-5.
  88. Muhiddin HS, Abidin RZ, Budu, Sirajuddin J, Islam IC, Ichsan AM. Comparison of serum and vitreous TGF-β1 levels in proliferative diabetic retinopathy with and without panretinal photocoagulation laser therapy. Bali Medical Journal. 2022;11(1):429-433.
  89. Wibisono T, Sutikno B, Ahadiah TH, Utomo B, Kenconowungu CD. Comparison of the efficacy of hot saline irrigation and tranexamic acid on Boezaart score, intraoperative blood loss, and duration of surgery in functional endoscopic sinus surgery: a systematic review and meta-analysis. Bali Medical Journal. 2023;12(2):1414-1420.

How to Cite

Kautsar Abiyoga, Yulia Primitasari, & Delfitri Lutfi. (2023). Intravitreal triamcinolone acetonide and bevacizumab injection as prevention of proliferative vitreoretinopathy in open globe injury. Bali Medical Journal, 12(2), 1655–1664. https://doi.org/10.15562/bmj.v12i2.4339

HTML
12

Total
8

Share

Search Panel