Skip to main content Skip to main navigation menu Skip to site footer

The effect of bisphosphonate and platelet-rich plasma in anterior cruciate ligament reconstruction: an article review

  • Tangkas Sibarani ,
  • Bambang Purwanto ,
  • Ambar Mudigdo ,
  • Brian Wasita ,

Abstract

Link of Video Abstract: https://youtu.be/fn9kA601YVo

ACL rupture is a common injury often resulting from previously healthy individuals' non-contact knee injuries. ACL rupture in young adults and teenagers are becoming more common, contrary to earlier theories that suggested ACL damage was uncommon in skeletally immature people. This risk is significantly raised by concomitant meniscal injury whether or not an ACL reconstruction is undertaken. Although surgical management with allograft or autograft reconstruction can be achieved successfully, there are some serious complications following ACL reconstruction. The supply of autografts is limited, especially in situations with numerous ligament injuries or re-ruptures, which might result in morbidity at the donor site. Allografts can increase the spread of illness and trigger an inflammatory response, which is a drawback. There has been much interest in a tissue-engineered ACL graft because of these issues and current developments in bioengineering and regenerative medicine. According to recent research, following an ACL repair, the bone marrow density surrounding the knee area diminishes. Platelet Rich Plasma (PRP) and Bisphosphonate are the substrates that could ameliorate this phenomenon.  Therefore, this review aims to compile evidence of PRP and bisphosphonate and its effect on the tendon-bone interface in ACL reconstruction.

References

  1. Zbrojkiewicz D, Vertullo C, Grayson JE. Increasing anterior cruciate ligament reconstruction rates in young Australians, 2000–2015. Med J Aust. 2018;208(8):354–8. Available from: http://dx.doi.org/10.5694/mja17.00974
  2. Yao S, Fu BS-C, Yung PS-H. Graft healing after anterior cruciate ligament reconstruction (ACLR). Asia-Pacific J Sport Med Arthrosc Rehabil Technol. 2021;25:8–15. Available from: https://pubmed.ncbi.nlm.nih.gov/34094881
  3. Figueroa D, Figueroa F, Calvo R, Vaisman A, Ahumada X, Arellano S. Platelet-Rich Plasma Use in Anterior Cruciate Ligament Surgery: Systematic Review of the Literature. Arthrosc J Arthrosc & Relat Surg. 2015;31(5):981–8. Available from: http://dx.doi.org/10.1016/j.arthro.2014.11.022
  4. Adhitya IPGS, Manuaba IBAP, Suprawesta L, Mauludina YS, Marufa SA. Patient characteristics of non-operative anterior cruciate ligament injury associated with poor knee functions on activities of daily living: A cross-sectional study. Bali Med J. 2020;9(3):608–13.
  5. Vavken P, Sadoghi P, Murray MM. The effect of platelet concentrates on graft maturation and graft-bone interface healing in anterior cruciate ligament reconstruction in human patients: a systematic review of controlled trials. Arthroscopy. 2011/08/20. 2011;27(11):1573–83. Available from: https://pubmed.ncbi.nlm.nih.gov/21862277
  6. Mistry H, Metcalfe A, Colquitt J, Loveman E, Smith NA, Royle P, et al. Autograft or allograft for reconstruction of anterior cruciate ligament: a health economics perspective. Knee Surgery, Sport Traumatol Arthrosc. 2019;27(6):1782–90. Available from: http://dx.doi.org/10.1007/s00167-019-05436-z
  7. Leong NL, Petrigliano FA, McAllister DR. Current tissue engineering strategies in anterior cruciate ligament reconstruction. J Biomed Mater Res Part A. 2013;102(5):1614–24. Available from: http://dx.doi.org/10.1002/jbm.a.34820
  8. Lui PPY, Lee YW, Mok TY, Cheuk YC, Chan KM. Alendronate reduced peri-tunnel bone loss and enhanced tendon graft to bone tunnel healing in anterior cruciate ligament reconstruction. Eur Cells Mater. 2013;25:78–96. Available from: http://dx.doi.org/10.22203/ecm.v025a06
  9. Zhou Y, Zhang J, Yang J, Narava M, Zhao G, Yuan T, et al. Kartogenin with PRP promotes the formation of the fibrocartilage zone in the tendon-bone interface. J Tissue Eng Regen Med. 2017;11(12):3445–56. Available from: http://dx.doi.org/10.1002/term.2258
  10. Rupreht M, Jevtič V, Serša I, Vogrin M, Jevšek M. Evaluation of the tibial tunnel after intraoperatively administered platelet-rich plasma gel during anterior cruciate ligament reconstruction using diffusion weighted and dynamic contrast-enhanced MRI. J Magn Reson Imaging. 2012;37(4):928–35. Available from: http://dx.doi.org/10.1002/jmri.23886
  11. Yao S, Fu BSC, Yung PSH. Graft healing after anterior cruciate ligament reconstruction (ACLR). Asia-Pacific J Sport Med Arthrosc Rehabil Technol. 2021;25:8–15.
  12. Chen C-H. Graft healing in anterior cruciate ligament reconstruction. Sports Med Arthrosc Rehabil Ther Technol. 2009;1(1):21. Available from: https://pubmed.ncbi.nlm.nih.gov/19772670
  13. Hexter AT, Sanghani-Kerai A, Heidari N, Kalaskar DM, Boyd A, Pendegrass C, et al. Mesenchymal stromal cells and platelet-rich plasma promote tendon allograft healing in ovine anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2020/12/17. 2021;29(11):3678–88. Available from: https://pubmed.ncbi.nlm.nih.gov/33331973
  14. Le ADK, Enweze L, DeBaun MR, Dragoo JL. Platelet-Rich Plasma. Clin Sports Med. 2019;38(1):17–44. Available from: http://dx.doi.org/10.1016/j.csm.2018.08.001
  15. Azcárate AV, Lamo-Espinosa J, Beola JDA, Gonzalez MH, Gasque GM, Nin JRV. Comparison between two different platelet-rich plasma preparations and control applied during anterior cruciate ligament reconstruction. Is there any evidence to support their use? Injury. 2014;45:S36–41. Available from: http://dx.doi.org/10.1016/s0020-1383(14)70008-7
  16. Ağır İ, Aytekin M, Küçükdurmaz F, Kocaoğlu B, Çetinel S, Karahan M. The effect of platelet-rich plasma in bone-tendon integration. Adv Clin Exp Med. 2017;26(2):193–9. Available from: http://dx.doi.org/10.17219/acem/61384
  17. Lee A-J, Chung W-H, Kim D-H, Lee K-P, Chung D-J, Do SH, et al. Anterior cruciate ligament reconstruction in a rabbit model using canine small intestinal submucosa and autologous platelet-rich plasma. J Surg Res. 2012;178(1):206–15. Available from: http://dx.doi.org/10.1016/j.jss.2012.01.052
  18. Teng C, Zhou C, Xu D, Bi F. Combination of platelet-rich plasma and bone marrow mesenchymal stem cells enhances tendon-bone healing in a rabbit model of anterior cruciate ligament reconstruction. J Orthop Surg Res. 2016;11(1):96. Available from: https://pubmed.ncbi.nlm.nih.gov/27605093
  19. Zhang M, Zhen J, Zhang X, Yang Z, Zhang L, Hao D, et al. Effect of Autologous Platelet-Rich Plasma and Gelatin Sponge for Tendon-to-Bone Healing After Rabbit Anterior Cruciate Ligament Reconstruction. Arthrosc J Arthrosc & Relat Surg. 2019;35(5):1486–97. Available from: http://dx.doi.org/10.1016/j.arthro.2018.11.014
  20. Valentí Nin JR, Mora Gasque G, Valentí Azcárate A, Aquerreta Beola JD, Hernandez Gonzalez M. Has Platelet-Rich Plasma Any Role in Anterior Cruciate Ligament Allograft Healing? Arthrosc J Arthrosc & Relat Surg. 2009;25(11):1206–13. Available from: http://dx.doi.org/10.1016/j.arthro.2009.06.002
  21. Vogrin M, Rupreht M, Dinevski D, Hašpl M, Kuhta M, Jevsek M, et al. Effects of a Platelet Gel on Early Graft Revascularization after Anterior Cruciate Ligament Reconstruction: A Prospective, Randomized, Double-Blind, Clinical Trial. Eur Surg Res. 2010;45(2):77–85. Available from: http://dx.doi.org/10.1159/000318597
  22. Rupreht M, Vogrin M, Hussein M. MRI evaluation of tibial tunnel wall cortical bone formation after platelet-rich plasma applied during anterior cruciate ligament reconstruction. Radiol Oncol. 2013;47(2):119–24. Available from: https://pubmed.ncbi.nlm.nih.gov/23801907
  23. Drake MT, Clarke BL, Khosla S. Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin Proc. 2008;83(9):1032–45. Available from: https://pubmed.ncbi.nlm.nih.gov/18775204
  24. Lui PPY, Lee YW, Mok TY, Cheuk YC. Local administration of alendronate reduced peri-tunnel bone loss and promoted graft-bone tunnel healing with minimal systemic effect on bone in contralateral knee. J Orthop Res. 2013;31(12):1897–906. Available from: http://dx.doi.org/10.1002/jor.22442
  25. Hjorthaug GA, Søreide E, Nordsletten L, Madsen JE, Reinholt FP, Niratisairak S, et al. Negative effect of zoledronic acid on tendon-to-bone healing. Acta Orthop. 2018/03/01. 2018;89(3):360–6. Available from: https://pubmed.ncbi.nlm.nih.gov/29493345
  26. Hays PL, Kawamura S, Deng X-H, Dagher E, Mithoefer K, Ying L, et al. The Role of Macrophages in Early Healing of a Tendon Graft in a Bone Tunnel. J Bone Jt Surgery-American Vol. 2008;90(3):565–79. Available from: http://dx.doi.org/10.2106/jbjs.f.00531
  27. Thomopoulos S, Matsuzaki H, Zaegel M, Gelberman RH, Silva MJ. Alendronate prevents bone loss and improves tendon-to-bone repair strength in a canine model. J Orthop Res. 2007;25(4):473–9. Available from: http://dx.doi.org/10.1002/jor.20293
  28. Hjorthaug GA, Søreide E, Nordsletten L, Madsen JE, Reinholt FP, Niratisairak S, et al. Negative effect of zoledronic acid on tendon-to-bone healing: In vivo study of biomechanics and bone remodeling in a rat model. Acta Orthop. 2018;89(3):360–6.
  29. Lui PPY, Lee YW, Mok TY, Cheuk YC, Chan KM. Alendronate reduced peri-tunnel bone loss and enhanced tendon graft to bone tunnel healing in anterior cruciate ligament reconstruction. Eur Cells Mater. 2012; 25:78-96. doi:10.22203/ecm.v025a06

How to Cite

Sibarani, T., Purwanto, B., Mudigdo, A., & Wasita, B. (2023). The effect of bisphosphonate and platelet-rich plasma in anterior cruciate ligament reconstruction: an article review. Bali Medical Journal, 12(2), 1497–1501. https://doi.org/10.15562/bmj.v12i2.4292

HTML
13

Total
10

Share

Search Panel