Skip to main content Skip to main navigation menu Skip to site footer

Regenerative alveolar bone in dental sockets of diabetic wistar rats post tooth extraction

Abstract

Background: The bone healing of the alveolar socket post-dental extraction is critical in dental services. Delayed healing is a common problem in diabetes mellitus (DM) patients. It is due to the impaired angiogenic response and microvascular complications. Okra fruit extract can control diabetes mellitus (DM) in several ways, delaying glucose absorption and regenerating pancreatic cells. It can impact an increase in insulin secretion and glycogenesis to control hyperglycemia in DM. This study analyzed the regenerative alveolar bone through the expression of TGF-β2 in the tooth socket of Wistar rats with diabetes mellitus post-extraction after administration of okra fruit extract.

Patients and methods: Extraction of the rat mandibular left incisor was performed using a pair of modified forceps. The tooth sockets were then rinsed using a saline solution. Two groups (control & treatment) of four rats were sacrificed on days 3, 5, and 7. The socket tissues from the rats were then immunohistochemically analyzed

Results: The average level of TGF‐β1 expression in the treatment (T) groups was higher compared to the control (C) group: day 3 (10.50±2.67 versus 4.83±1.17), day 5 (12.33±1.63 versus 5.17±2.32), and day 7 (13.00±2.83 versus 4.50±1.05), with P = 0.000

Conclusion: The administration of okra fruit extract can increase regenerative alveolar bone healing through increased expression of TGF-β2 in the dental socket after tooth extraction of diabetic Wistar rats.

References

  1. Soltanoff CS, Yang S, Chen W, Li Y-P. Signaling networks that control the lineage commitment and differentiation of bone cells. Crit Rev Eukaryot Gene Expr. 2009;19(1):1–46. Available from: https://pubmed.ncbi.nlm.nih.gov/19191755
  2. Huang W, Yang S, Shao J, Li Y-P. Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front Biosci. 2007;12:3068–92. Available from: https://pubmed.ncbi.nlm.nih.gov/17485283
  3. Mohandas A, Anisha BS, Chennazhi KP, Jayakumar R. Chitosan–hyaluronic acid/VEGF loaded fibrin nanoparticles composite sponges for enhancing angiogenesis in wounds. Colloids Surfaces B Biointerfaces. 2015;127:105–13. Available from: http://dx.doi.org/10.1016/j.colsurfb.2015.01.024
  4. Anisha BS, Biswas R, Chennazhi KP, Jayakumar R. Chitosan–hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds. Int J Biol Macromol. 2013;62:310–20. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2013.09.011
  5. Singh MR, Saraf S, Vyas A, Jain V, Singh D. Innovative approaches in wound healing: trajectory and advances. Artif Cells, Nanomedicine, Biotechnol. 2013;41(3):202–12. Available from: http://dx.doi.org/10.3109/21691401.2012.716065
  6. Alavi A, Sibbald RG, Mayer D, Goodman L, Botros M, Armstrong DG, et al. Diabetic foot ulcers. J Am Acad Dermatol. 2014;70(1):1.e1-1.e18. Available from: http://dx.doi.org/10.1016/j.jaad.2013.06.055
  7. Babaei S, Bayat M, Nouruzian M, Bayat M. Pentoxifylline improves cutaneous wound healing in streptozotocin-induced diabetic rats. Eur J Pharmacol. 2013;700(1–3):165–72. Available from: http://dx.doi.org/10.1016/j.ejphar.2012.11.024
  8. Okizaki S, Ito Y, Hosono K, Oba K, Ohkubo H, Amano H, et al. Suppressed recruitment of alternatively activated macrophages reduces TGF-β1 and impairs wound healing in streptozotocin-induced diabetic mice. Biomed & Pharmacother. 2015;70:317–25. Available from: http://dx.doi.org/10.1016/j.biopha.2014.10.020
  9. Loots MAM, Kenter SB, Au FL, van Galen WJM, Middelkoop E, Bos JD, et al. Fibroblasts derived from chronic diabetic ulcers differ in their response to stimulation with EGF, IGF-I, bFGF and PDGF-AB compared to controls. Eur J Cell Biol. 2002;81(3):153–60. Available from: http://dx.doi.org/10.1078/0171-9335-00228
  10. Basu Mallik S, Jayashree BS, Shenoy RR. Epigenetic modulation of macrophage polarization- perspectives in diabetic wounds. J Diabetes Complications. 2018;32(5):524–30. Available from: http://dx.doi.org/10.1016/j.jdiacomp.2018.01.015
  11. Maruyama K, Asai J, Ii M, Thorne T, Losordo DW, D’Amore PA. Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing. Am J Pathol. 2007;170(4):1178–91. Available from: https://pubmed.ncbi.nlm.nih.gov/17392158
  12. Alhaji Isa M. THE INVITRO ANTIBACTERIAL ACTIVITY OF OKRA (Abelmoschus esculentus) AGAINST SOME SELECTED BACTERIA FROM MAIDUGURI, NORTH EASTERN NIGERIA. 2015;2.
  13. D SK, T ET, K AK, A PK, D BSR, Nadendla R. A REVIEW ON: ABELMOSCHUS ESCULENTUS (OKRA). Int Res J Pharm Appl Sci. 2013;3(4 SE-Review Articles):129–32. Available from: https://scienztech.org/index.php/irjpas/article/view/586
  14. Soemarie Y. UJI AKTIVITAS ANTIINFLAMASI KUERSETIN KULIT BAWANG MERAH (Allium cepa L.) PADA MENCIT PUTIH JANTAN (Mus musculus). J Ilm Ibnu Sina. 2016;1(2 SE-Artikel). Available from: https://e-jurnal.stikes-isfi.ac.id/index.php/JIIS/article/view/46
  15. Yeo YL, Chia YY, Lee CH, Sheng Sow H, Sum Yap W. Effectiveness of Maceration Periods with Different Extraction Solvents on in-vitro Antimicrobial Activity from Fruit of Momordica charantia L. J Appl Pharm Sci. 2014;4(10):16–23. Available from: http://dx.doi.org/10.7324/japs.2014.401004
  16. Luthfi M, Juliastuti WS, Asyhari NPO. The Effect Of Giving Okra (Abelmoschus Esculentus) Extract On The Increase Of Vascular Endhothelial Growth Factor (Vegf). Indones J Dent Med. 2019;2(2):35. Available from: http://dx.doi.org/10.20473/ijdm.v2i2.2019.35-40
  17. Qinna NA, Badwan AA. Impact of streptozotocin on altering normal glucose homeostasis during insulin testing in diabetic rats compared to normoglycemic rats. Drug Des Devel Ther. 2015;9:2515–25. Available from: https://pubmed.ncbi.nlm.nih.gov/26005328
  18. Gunawan F, Sularsih, Seomartono. Perbedaan Kitosan Berat Molekul Rendah dan Tinggi Terhadap Jumlah Sel Limfosit pada Proses Penyembuhan Luka Pencabutan Gigi. DENTA. 2021;9(1):113–21. Available from: https://journal-denta.hangtuah.ac.id/index.php/jurnal/article/view/213
  19. El Hady T, Karam S, El Sawa A, Saad N. EXPRESSION OF VASCULAR ENDOTHELIAL GROWTH FACTOR DURING HEALING OF EXTRACTION SOCKETS IN DIABETIC RATS. Alexandria Dent J. 2015;40(1):120–5. Available from: http://dx.doi.org/10.21608/adjalexu.2015.58746
  20. Luthfi M, Juliastuti WS, Risky YA, Wijayanti EH, Rachmawati AE, Asyhari NPO. Expression of fibroblast cells after extraction of wistar rat teeth after topical application of okra fruit (Abelmoschus esculentus) gel. Infect Dis Rep. 2020;12(Suppl 1):8726. Available from: https://pubmed.ncbi.nlm.nih.gov/32874458
  21. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. PERSPECTIVE ARTICLE: Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16(5):585–601. Available from: http://dx.doi.org/10.1111/j.1524-475x.2008.00410.x
  22. Crovetti G, Martinelli G, Issi M, Barone M, Guizzardi M, Campanati B, et al. Platelet gel for healing cutaneous chronic wounds. Transfus Apher Sci. 2004;30(2):145–51. Available from: http://dx.doi.org/10.1016/j.transci.2004.01.004
  23. Patel S, Srivastava S, Singh MR, Singh D. Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed & Pharmacother. 2019;112:108615. Available from: http://dx.doi.org/10.1016/j.biopha.2019.108615
  24. Durga M, Nathiya S, Devasena T. Immunomodulatory and antioxidant actions of dietary flavonoids. Int J Pharm Pharm Sci. 2014;6:50–6.
  25. Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci. 2016/05/14. 2016;73(20):3861–85. Available from: https://pubmed.ncbi.nlm.nih.gov/27180275
  26. Krzyszczyk P, Schloss R, Palmer A, Berthiaume F. The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes. Front Physiol. 2018;9:419. Available from: https://pubmed.ncbi.nlm.nih.gov/29765329
  27. Xia F, Zhong Y, Li M, Chang Q, Liao Y, Liu X, et al. Antioxidant and Anti-Fatigue Constituents of Okra. Nutrients. 2015;7(10):8846–58. Available from: https://pubmed.ncbi.nlm.nih.gov/26516905
  28. Qing C. The molecular biology in wound healing & non-healing wound. Chinese J Traumatol = Zhonghua chuang shang za zhi. 2017/06/30. 2017;20(4):189–93. Available from: https://pubmed.ncbi.nlm.nih.gov/28712679
  29. Jimenez PA, Jimenez SE. Tissue and cellular approaches to wound repair. Am J Surg. 2004;187(5):S56–64. Available from: http://dx.doi.org/10.1016/s0002-9610(03)00305-2
  30. Rathee P, Chaudhary H, Rathee S, Rathee D, Kumar V, Kohli K. Mechanism of Action of Flavonoids as Anti-inflammatory Agents: A Review. Inflamm & Allergy - Drug Targets. 2009;8(3):229–35. Available from: http://dx.doi.org/10.2174/187152809788681029
  31. Bao D, Wang J, Pang X, Liu H. Protective Effect of Quercetin against Oxidative Stress-Induced Cytotoxicity in Rat Pheochromocytoma (PC-12) Cells. Molecules. 2017;22(7):1122. Available from: https://pubmed.ncbi.nlm.nih.gov/28684704
  32. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11(2):98–107. Available from: http://dx.doi.org/10.1038/nri2925
  33. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011/01/21. 2011;11(2):85–97. Available from: https://pubmed.ncbi.nlm.nih.gov/21252989
  34. Zozulinska D, Wierusz-Wysocka B. Type 2 diabetes mellitus as inflammatory disease. Diabetes Res Clin Pract. 2006;74(2):S12–6. Available from: http://dx.doi.org/10.1016/j.diabres.2006.06.007
  35. Eid HM, Nachar A, Thong F, Sweeney G, Haddad PS. The molecular basis of the antidiabetic action of quercetin in cultured skeletal muscle cells and hepatocytes. Pharmacogn Mag. 2015;11(41):74–81. Available from: https://pubmed.ncbi.nlm.nih.gov/25709214
  36. Jeong S-M, Kang M-J, Choi H-N, Kim J-H, Kim J-I. Quercetin ameliorates hyperglycemia and dyslipidemia and improves antioxidant status in type 2 diabetic db/db mice. Nutr Res Pract. 2012/06/30. 2012;6(3):201–7. Available from: https://pubmed.ncbi.nlm.nih.gov/22808343
  37. Lai P-B, Zhang L, Yang L-Y. Quercetin Ameliorates Diabetic Nephropathy by Reducing the Expressions of Transforming Growth Factor-β1 and Connective Tissue Growth Factor in Streptozotocin-Induced Diabetic Rats. Ren Fail. 2011;34(1):83–7. Available from: http://dx.doi.org/10.3109/0886022x.2011.623564
  38. Chaudhry PS, Cabrera J, Juliani HR, Varma SD. Inhibition of human lens aldose reductase by flavonoids, sulindac and indomethacin. Biochem Pharmacol. 1983;32(13):1995–8. Available from: http://dx.doi.org/10.1016/0006-2952(83)90417-3
  39. Valensi P, Le Devehat C, Richard J-L, Farez C, Khodabandehlou T, Rosenbloom RA, et al. A multicenter, double-blind, safety study of QR-333 for the treatment of symptomatic diabetic peripheral neuropathy. J Diabetes Complications. 2005;19(5):247–53. Available from: http://dx.doi.org/10.1016/j.jdiacomp.2005.05.011

How to Cite

Nanik Zubaidah, Muhammad Luthfi, Wisnu Setyari, Retno Palupi, Nur Imamatul Ummah, Ardyta Lintang Maheswari, Arif Rahman Nurdianto, & Fathillah Abdul Razak. (2022). Regenerative alveolar bone in dental sockets of diabetic wistar rats post tooth extraction. Bali Medical Journal, 11(3), 1699–1705. https://doi.org/10.15562/bmj.v11i3.3874

HTML
0

Total
0

Share

Search Panel

Nanik Zubaidah
Google Scholar
Pubmed
BMJ Journal


Muhammad Luthfi
Google Scholar
Pubmed
BMJ Journal


Wisnu Setyari
Google Scholar
Pubmed
BMJ Journal


Retno Palupi
Google Scholar
Pubmed
BMJ Journal


Nur Imamatul Ummah
Google Scholar
Pubmed
BMJ Journal


Ardyta Lintang Maheswari
Google Scholar
Pubmed
BMJ Journal


Arif Rahman Nurdianto
Google Scholar
Pubmed
BMJ Journal


Fathillah Abdul Razak
Google Scholar
Pubmed
BMJ Journal