Skip to main content Skip to main navigation menu Skip to site footer

The role of neuron-specific enolase (NSE) and S100B protein in the incidence of acute postoperative cognitive dysfunction (POCD) in geriatric patients receiving general anesthesia

  • Muhammad Alvin ,
  • Prananda Surya Airlangga ,
  • Edward Kusuma ,
  • Prihatma Kriswidyatomo ,
  • Pudji Lestari ,
  • Yunias Setiawati ,

Abstract

Introduction: Postoperative cognitive dysfunction (POCD) following general anesthesia is frequent among geriatric patients worldwide. Neuroinflammation and neuronal injury have been associated with the incidence of POCD. Some biomarkers of brain damage including neuron-specific enolase (NSE) and S100B protein have been widely studied; however, their association with the incidence of POCD is still controversial. This study aimed to assess the correlation of serum NSE and S100B levels with the incidence of POCD among geriatric patients receiving general anesthesia.

Methods: A prospective cohort study was conducted among geriatric patients receiving general anesthesia at Dr. Soetomo Hospital, Surabaya from July to October 2022. The Montreal Cognitive Assessment (MoCA) INA instrument was used to assess POCD, and enzyme-linked immunosorbent assay (ELISA) was used to quantify the levels of serum NSE and S100B. Spearman’s rank correlation was implemented to identify the correlation of MoCA INA scores with the levels of NSE and S100B. Mann-Whitney analysis was used to determine the association between NSE and S100B levels with the incidence of POCD. A p-value of ≤0.05 was considered statistically significant.

Results: A total of 48 patients were enrolled in the study and 16.7% of them had POCD. Spearman’s correlation test suggested no significant correlation between MoCA INA score with serum NSE level (rs:-0.095; p=0.522) and S100B level (rs:-0.213; p=0.146). Mann-Whitney analysis indicated no significant difference in the NSE and S100B levels of patients with and without POCD (p=0.3470 and p=0.097, respectively).

Conclusion: There was no significant association between NSE and S100B levels with the incidence of POCD among geriatric patients receiving general anesthesia during elective surgeries at Dr. Soetomo Hospital, Surabaya.

References

  1. Monk TG, Weldon BC, Garvan CW, Dede DE, van der Aa MT, Heilman KM, et al. Predictors of Cognitive Dysfunction after Major Noncardiac Surgery. Anesthesiology [Internet]. 2008;108(1):18–30. Available from: http://dx.doi.org/10.1097/01.anes.0000296071.19434.1e
  2. Andriyanto L, Wijoto W, Margereta Rehatta N. Disfungsi Kognitif Pascaoperasi Pada Pasien Operasi Elektif. J Neuroanestesi Indones [Internet]. 2012;1(2):67–75. Available from: http://dx.doi.org/10.24244/jni.vol1i2.96
  3. Cottrell JE, Hartung J. Anesthesia and Cognitive Outcome in Elderly Patients: A Narrative Viewpoint. J Neurosurg Anesthesiol [Internet]. 2019;32(1):9–17. Available from: http://dx.doi.org/10.1097/ana.0000000000000640
  4. Chan MT V, Cheng BCP, Lee TMC, Gin T. BIS-guided Anesthesia Decreases Postoperative Delirium and Cognitive Decline. J Neurosurg Anesthesiol [Internet]. 2013;25(1):33–42. Available from: http://dx.doi.org/10.1097/ana.0b013e3182712fba
  5. Lin R, Zhang F, Xue Q, Yu B. Accuracy of Regional Cerebral Oxygen Saturation in Predicting Postoperative Cognitive Dysfunction After Total Hip Arthroplasty. J Arthroplasty [Internet]. 2013;28(3):494–7. Available from: http://dx.doi.org/10.1016/j.arth.2012.06.041
  6. Moller JT, Cluitmans P, Rasmussen LS, Houx P, Rasmussen H, Canet J, et al. Long-term postoperative cognitive dysfunction in the elderly: ISPOCD1 study. Lancet [Internet]. 1998;351(9106):857–61. Available from: http://dx.doi.org/10.1016/s0140-6736(97)07382-0
  7. Silbert B, Evered L, Scott DA. Cognitive decline in the elderly: Is anaesthesia implicated? Best Pract & Res Clin Anaesthesiol [Internet]. 2011;25(3):379–93. Available from: http://dx.doi.org/10.1016/j.bpa.2011.05.001
  8. Gao L, Taha R, Gauvin D, Othmen LB, Wang Y, Blaise G. Postoperative Cognitive Dysfunction After Cardiac Surgery. Chest [Internet]. 2005;128(5):3664–70. Available from: http://dx.doi.org/10.1378/chest.128.5.3664
  9. Budianto F, Setiawan P, Hamzah H, Yulianti E. Comparing Alteration of MMSE (Mini-Mental State Examination) Scores as Cognitive Function Test in Geriatrics After General and Regional Anesthesia. Indones J Anesthesiol Reanim [Internet]. 2020;2(2):47. Available from: http://dx.doi.org/10.20473/ijar.v2i22020.47-52
  10. Nada IKW. Postoperative Cognitive Function Disorders. Denpasar: Faculty of Medicine, Universitas Udayana; 2018.
  11. Newman MF, Kirchner JL, Phillips-Bute B, Gaver V, Grocott H, Jones RH, et al. Longitudinal Assessment of Neurocognitive Function after Coronary-Artery Bypass Surgery. N Engl J Med [Internet]. 2001;344(6):395–402. Available from: http://dx.doi.org/10.1056/nejm200102083440601
  12. Wardiyani NS, Nurimaba N, Kurniani N. Korelasi Peningkatan Kadar Neuron Spesific Enolase dengan Derajat Keparahan dan Luaran Fungsional Pasien Stroke Infark Aterotrombotik Akut. Maj Kedokt Bandung [Internet]. 2010;42(2):62–8. Available from: http://dx.doi.org/10.15395/mkb.v42n2.218
  13. Rasmussen LS, Christiansen M, Rasmussen H, Kristensen PA, Moller JT. Do blood concentrations of neurone specific enolase and S-100 beta protein reflect cognitive dysfunction after abdominal surgery?ISPOCD Group. Br J Anaesth [Internet]. 2000;84(2):242–4. Available from: http://dx.doi.org/10.1093/oxfordjournals.bja.a013410
  14. Hajduková L, Sobek O, Prchalová D, Bílková Z, Koudelková M, Lukášková J, et al. Biomarkers of Brain Damage: S100B and NSE Concentrations in Cerebrospinal Fluid—A Normative Study. Biomed Res Int [Internet]. 2015;2015:1–7. Available from: http://dx.doi.org/10.1155/2015/379071
  15. Fowler Å, Ygberg S, Bogdanovic G, Wickström R. Biomarkers in Cerebrospinal Fluid of Children With Tick-borne Encephalitis. Pediatr Infect Dis J [Internet]. 2016;35(9):961–6. Available from: http://dx.doi.org/10.1097/inf.0000000000001210
  16. Linstedt U, Meyer O, Kropp P, Berkau A, Tapp E, Zenz M. Serum concentration of S-100 protein in assessment of cognitive dysfunction after general anesthesia in different types of surgery. Acta Anaesthesiol Scand [Internet]. 2002;46(4):384–9. Available from: http://dx.doi.org/10.1034/j.1399-6576.2002.460409.x
  17. Böhmer AE, Oses JP, Schmidt AP, Perón CS, Krebs CL, Oppitz PP, et al. Neuron-Specific Enolase, S100B, and Glial Fibrillary Acidic Protein Levels as Outcome Predictors in Patients With Severe Traumatic Brain Injury. Neurosurgery [Internet]. 2011;68(6):1624–31. Available from: http://dx.doi.org/10.1227/neu.0b013e318214a81f
  18. Tomaszewski D. Biomarkers of Brain Damage and Postoperative Cognitive Disorders in Orthopedic Patients: An Update. Biomed Res Int [Internet]. 2015;2015:1–16. Available from: http://dx.doi.org/10.1155/2015/402959
  19. Jones EL, Gauge N, Nilsen OB, Lowery D, Wesnes K, Katsaiti E, et al. Analysis of Neuron-Specific Enolase and S100B as Biomarkers of Cognitive Decline Following Surgery in Older People. Dement Geriatr Cogn Disord [Internet]. 2012;34(5–6):307–11. Available from: http://dx.doi.org/10.1159/000345538
  20. Silva FP, Schmidt AP, Valentin LS, Pinto KO, Zeferino SP, Oses JP, et al. S100B protein and neuron-specific enolase as predictors of cognitive dysfunction after coronary artery bypass graft surgery. Eur J Anaesthesiol [Internet]. 2016;33(9):681–9. Available from: http://dx.doi.org/10.1097/eja.0000000000000450
  21. Baranyi A, Rothenhäusler HB. The impact of S100b and persistent high levels of neuron-specific enolase on cognitive performance in elderly patients after cardiopulmonary bypass. Brain Inj [Internet]. 2013;27(4):417–24. Available from: http://dx.doi.org/10.3109/02699052.2012.750751
  22. Pochynok T V, Vasiukova MM, Kudlatska-Tyshko IS. Peroxidative degradation of proteins and lipids in undifferentiated connective tissue dysplasia in children, Ukraine. Narra J [Internet]. 2021;1(2). Available from: http://dx.doi.org/10.52225/narraj.v1i2.41
  23. Palupi IR, Sugianto P. Accuracy of Meningitis Bacterial Score (MBS) as an indicator in establishing the diagnosis of acute bacterial meningitis in adults. Narra J [Internet]. 2021;1(3). Available from: http://dx.doi.org/10.52225/narra.v1i3.66
  24. Sarengat R, Islam MS, Ardhi MS. Correlation of neutrophil-to-lymphocyte ratio and clinical outcome of acute thrombotic stroke in patients with COVID-19. Narra J [Internet]. 2021;1(3). Available from: http://dx.doi.org/10.52225/narra.v1i3.50
  25. Nagata K, Nakajima K, Hiraoka A, Arimichi M, Oshita T, Muraki R, et al. Postoperative cognitive dysfunction following cardiac surgery. Japanese J Extra-Corporeal Technol [Internet]. 2019;46(2):131–8. Available from: http://dx.doi.org/10.7130/jject.46.131
  26. Prohl J, Bodenburg S, Rustenbach SJ. Early prediction of long-term cognitive impairment after cardiac arrest. J Int Neuropsychol Soc [Internet]. 2009;15(3):344–53. Available from: http://dx.doi.org/10.1017/s1355617709090493
  27. Chi Y, Li Z, Lin C, Wang Q, Zhou Y. Evaluation of the postoperative cognitive dysfunction in elderly patients with general anesthesia. Eur Rev Med Pharmacol Sci. 2017;21(6):1346-54.
  28. Jones EL, Gauge N, Nilsen OB, Lowery D, Wesnes K, Katsaiti E, et al. Analysis of neuron-specific enolase and S100B as biomarkers of cognitive decline following surgery in older people. Dementia and Geriatric Cognitive Disorders. 2013;34(5-6):307-11.
  29. van Munster BC, Korse CM, de Rooij SE, Bonfrer JM, Zwinderman AH, Korevaar JC. Markers of cerebral damage during delirium in elderly patients with hip fracture. BMC Neurol [Internet]. 2009;9(1). Available from: http://dx.doi.org/10.1186/1471-2377-9-21
  30. Funder KS, Steinmetz J. Post-operative cognitive dysfunction – Lessons from the ISPOCD studies. Trends Anaesth Crit Care [Internet]. 2012;2(3):94–7. Available from: http://dx.doi.org/10.1016/j.tacc.2012.02.009
  31. Akbar NL, Effendy E, Camellia V. The The Indonesian Version of Montreal Cognitive Assessment (MoCA-Ina): The Difference Scores Between Male Schizophrenia Prescribed by Risperidone and Adjunctive of Donepezil in Public Hospital of Dr Pirngadi Medan, Indonesia. Open Access Maced J Med Sci [Internet]. 2019;7(11):1762–7. Available from: http://dx.doi.org/10.3889/oamjms.2019.461
  32. Tiara T, Fidiana F. Obstructive sleep apnea and chronic pain as risk factors of cognitive impairment in elderly population: A study from Indonesia. Narra J [Internet]. 2021;1(3). Available from: http://dx.doi.org/10.52225/narra.v1i3.62
  33. Mahendran R, Chua J, Feng L, Kua EH, Preedy VR. The Mini-Mental State Examination and Other Neuropsychological Assessment Tools for Detecting Cognitive Decline [Internet]. Diet and Nutrition in Dementia and Cognitive Decline. Elsevier; 2015. p. 1159–74. Available from: http://dx.doi.org/10.1016/b978-0-12-407824-6.00109-9
  34. Esnafoglu E, Ayyıldız SN, Cırrık S, Erturk EY, Erdil A, Daglı A, et al. Evaluation of serum Neuron‐specific enolase, S100B, myelin basic protein and glial fibrilliary acidic protein as brain specific proteins in children with autism spectrum disorder. Int J Dev Neurosci [Internet]. 2017;61(1):86–91. Available from: http://dx.doi.org/10.1016/j.ijdevneu.2017.06.011
  35. McLean AJ, Le Couteur DG. Aging Biology and Geriatric Clinical Pharmacology. Pharmacol Rev [Internet]. 2004;56(2):163–84. Available from: http://dx.doi.org/10.1124/pr.56.2.4
  36. Hwang U, Morrison RS. The Geriatric Emergency Department. J Am Geriatr Soc [Internet]. 2007;55(11):1873–6. Available from: http://dx.doi.org/10.1111/j.1532-5415.2007.01400.x
  37. Widajanti N, Ichwani J, Dharmanta RS, Firdausi H, Haryono Y, Yulianti E, et al. Sarcopenia and frailty profile in the elderly community of Surabaya: a descriptive study. Acta medica Indonesiana. 2020;52(1):5-13.
  38. Riswanto AK, Sihombing WA, Haryono Y. An Indonesian elderly with primary progressive aphasia and behavioral variant of frontotemporal dementia: A case report and review article. Ann Med Surg [Internet]. 2022;81:104545. Available from: http://dx.doi.org/10.1016/j.amsu.2022.104545
  39. Faizah UZ, Widajanti N, Ichwani J. Two-Year Mortality Profile In Elderly With Frailty: Observational Descriptive Study in Elderly Health Community in Surabaya, Indonesia. J Community Med Public Heal Res [Internet]. 2022;3(1):26–37. Available from: http://dx.doi.org/10.20473/jcmphr.v3i1.30283
  40. Ballard C, Jones E, Gauge N, Aarsland D, Nilsen OB, Saxby BK, et al. Optimised Anaesthesia to Reduce Post Operative Cognitive Decline (POCD) in Older Patients Undergoing Elective Surgery, a Randomised Controlled Trial. PLoS One [Internet]. 2012;7(6):e37410. Available from: http://dx.doi.org/10.1371/journal.pone.0037410
  41. Hovens IB, Schoemaker RG, van der Zee EA, Heineman E, Izaks GJ, van Leeuwen BL. Thinking through postoperative cognitive dysfunction: How to bridge the gap between clinical and pre-clinical perspectives. Brain Behav Immun [Internet]. 2012;26(7):1169–79. Available from: http://dx.doi.org/10.1016/j.bbi.2012.06.004
  42. Ramlawi B, Rudolph JL, Mieno S, Khabbaz K, Sodha NR, Boodhwani M, et al. Serologic Markers of Brain Injury and Cognitive Function After Cardiopulmonary Bypass. Trans . Meet Am Surg Assoc [Internet]. 2006;124:258–66. Available from: http://dx.doi.org/10.1097/01.sla.0000239087.00826.b4
  43. Gerriets T, Schwarz N, Bachmann G, Kaps M, Kloevekorn WP, Sammer G, et al. Evaluation of Methods to Predict Early Long-Term Neurobehavioral Outcome After Coronary Artery Bypass Grafting. Am J Cardiol [Internet]. 2010;105(8):1095–101. Available from: http://dx.doi.org/10.1016/j.amjcard.2009.12.009
  44. Heyer E, Connolly E. Serum concentration of S-100 protein in assessment of cognitive dysfunction after general anesthesia in different types of surgery. Acta Anaesthesiol Scand [Internet]. 2003;47(7):911–2. Available from: http://dx.doi.org/10.1034/j.1399-6576.2003.00176.x
  45. McDonagh DL, Mathew JP, White WD, Phillips-Bute B, Laskowitz DT, Podgoreanu MV, et al. Cognitive Function after Major Noncardiac Surgery, Apolipoprotein E4 Genotype, and Biomarkers of Brain Injury. Anesthesiology [Internet]. 2010;112(4):852–9. Available from: http://dx.doi.org/10.1097/aln.0b013e3181d31fd7
  46. Basile AM, Fusi C, Conti AA, Paniccia R, Trefoloni G, Pracucci G, et al. S-100 Protein and Neuron-Specific Enolase as Markers of Subclinical Cerebral Damage after Cardiac Surgery: Preliminary Observation of a 6-Month Follow-Up Study. Eur Neurol [Internet]. 2001;45(3):151–9. Available from: http://dx.doi.org/10.1159/000052114
  47. Herrmann M, Ebert AD, Tober D, Hann J, Huth C. A contrastive analysis of release patterns of biochemical markers of brain damage after coronary artery bypass grafting and valve replacement and their association with the neurobehavioral outcome after cardiac surgery. Eur J Cardio-Thoracic Surg [Internet]. 1999;16(5):513–8. Available from: http://dx.doi.org/10.1016/s1010-7940(99)00245-6
  48. Gerriets T, Schwarz N, Bachmann G, Kaps M, Kloevekorn WP, Sammer G, et al. Evaluation of Methods to Predict Early Long-Term Neurobehavioral Outcome After Coronary Artery Bypass Grafting. American Journal of Cardiology. 2010;105(8):1095-101.
  49. He X, Wen LJ, Cui C, Li DR, Teng JF. The significance of S100β protein on postoperative cognitive dysfunction in patients who underwent single valve replacement surgery under general anesthesia. European review for medical and pharmacological sciences. 2017;21(9):2192-8.
  50. Yuan S-M. S100 and S100β: biomarkers of cerebral damage in cardiac surgery with or without the use of cardiopulmonary bypass. Revista Brasileira de Cirurgia Cardiovascular. 2014;29:630-41.
  51. Wan Z, Li Y, Ye H, Zi Y, Zhang G, Wang X. Plasma S100β and neuron-specific enolase, but not neuroglobin, are associated with early cognitive dysfunction after total arch replacement surgery. Medicine (Baltimore) [Internet]. 2021;100(15):e25446. Available from: http://dx.doi.org/10.1097/md.0000000000025446
  52. Ito K, Mizutani A, Kira S, Mori M, Iwasaka H, Noguchi T. Effect of Ulinastatin, a human urinary trypsin inhibitor, on the oleic acid-induced acute lung injury in rats via the inhibition of activated leukocytes. Injury [Internet]. 2005;36(3):387–94. Available from: http://dx.doi.org/10.1016/j.injury.2004.06.018

How to Cite

Alvin, M. ., Airlangga, P. S., Kusuma, E. ., Kriswidyatomo, P. ., Lestari, P. ., & Setiawati, Y. . (2022). The role of neuron-specific enolase (NSE) and S100B protein in the incidence of acute postoperative cognitive dysfunction (POCD) in geriatric patients receiving general anesthesia . Bali Medical Journal, 11(3), 1822–1827. https://doi.org/10.15562/bmj.v11i3.3846

HTML
0

Total
0

Share

Search Panel

Muhammad Alvin
Google Scholar
Pubmed
BMJ Journal


Prananda Surya Airlangga
Google Scholar
Pubmed
BMJ Journal


Edward Kusuma
Google Scholar
Pubmed
BMJ Journal


Prihatma Kriswidyatomo
Google Scholar
Pubmed
BMJ Journal


Pudji Lestari
Google Scholar
Pubmed
BMJ Journal


Yunias Setiawati
Google Scholar
Pubmed
BMJ Journal