Skip to main content Skip to main navigation menu Skip to site footer

Bacterial colonization in atopic dermatitis

  • Deryne Anggia Paramita ,
  • Khairina ,
  • Nova Zairina Lubis ,

Abstract

Background: Atopic dermatitis (AD) is the most common skin disease in infants and children, influenced by hereditary and environmental factors and characterized by an inflammatory reaction in the skin. The increase in AD has been explained by two hypotheses: the "hygiene hypothesis" and the "diet–microbiome hypothesis." AD is driven by a familial or personal predisposition to induce immunoglobulin E (IgE) antibodies and sensitize in response to stimuli. Microorganisms on the skin have been shown to play an important role in the pathogenesis of AD, and changes in the composition of the skin microbiome have been investigated in disease progression in pediatric AD patients.

Method: This descriptive observational study with a cross-sectional approach aims to determine the bacteria found in AD. The samples were taken from both the lesion and non-lesion areas in children with AD, which grown anaerobically and aerobically in blood and Brucella agar at 37C. The bacteri then indentified by Vitek® 2 and the data presented in percentage.

Result: Thirty-five pediatric patients (18 males and 17 females) with a mean age of 7.58 (0,17 – 16) years were diagnosed with AD and were examined for bacterial culture on lesions and non-lesions. A total of 4 types of bacteria were found on the neck, 20 on the forearm, 2 on hand folds, 2 on fingers, 1 on the knee, and 5 on the lower limbs.

Conclusion: The most common bacteria were Gram-negative bacilli, namely, Acinetobacter baumannii (15%) and Burkholderia cepacian (14.3%), followed by the Gram-positive coccus Staphylococcus hominis (11.4%).

References

  1. Sentosa H. Dermatitis Atopik. In: Akib, editor. Buku Ajar Alergi Imunologi Anak. 2nd ed. Jakarta: Ikatan Dokter Anak Indonesia; 2010. p. 234–43.
  2. Palmer CNA, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38(4):441–6.
  3. Gustafsson D, Sjöberg O, Foucard T. Development of allergies and asthma in infants and young children with atopic dermatitis - a prospective follow-up to 7 years of age. Allergy. 2000;55(3):240–5. Available from: http://dx.doi.org/10.1034/j.1398-9995.2000.00391.x
  4. Kapoor R, Menon C, Hoffstad O, Bilker W, Leclerc P, Margolis DJ. The prevalence of atopic triad in children with physician-confirmed atopic dermatitis. J Am Acad Dermatol. 2008;58(1):68–73. Available from: http://dx.doi.org/10.1016/j.jaad.2007.06.041
  5. Wulandari P, Lubis SR, Paramita DA. Comparison of skin hydration degrees based on moisturizing time in children’s atopic dermatitis. Bali Med J. 2021;10(1):194–8. Available from: https://doi.org/10.15562/bmj.v10i1.2137
  6. Lubis HH, Nababan KA, Paramita DA. Correlation of low vitamin D status with atopic dermatitis severity in children. Bali Med J. 2021;10(1):291–5. Available from: https://doi.org/10.15562/bmj.v10i1.2203
  7. Julia V, Macia L, Dombrowicz D. The impact of diet on asthma and allergic diseases. Nat Rev Immunol. 2015;15(5):308–22. Available from: http://dx.doi.org/10.1038/nri3830
  8. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20(2):159–66. Available from: http://dx.doi.org/10.1038/nm.3444
  9. Strachan DP. Family size, infection and atopy: the first decade of the “hygiene hypothesis.” Thorax. 2000;55 Suppl 1(Suppl 1):S2–10. Available from: https://pubmed.ncbi.nlm.nih.gov/10943631
  10. Halder RM, Richards GM. Photoaging in patients of skin of color. BASIC Clin DERMATOLOGY. 2004;28:55–64.
  11. Tan J, McKenzie C, Vuillermin PJ, Goverse G, Vinuesa CG, Mebius RE, et al. Dietary Fiber and Bacterial SCFA Enhance Oral Tolerance and Protect against Food Allergy through Diverse Cellular Pathways. Cell Rep. 2016;15(12):2809–24. Available from: http://dx.doi.org/10.1016/j.celrep.2016.05.047
  12. Wollina U. Microbiome in atopic dermatitis. Clin Cosmet Investig Dermatol. 2017;10:51–6. Available from: https://pubmed.ncbi.nlm.nih.gov/28260936
  13. Pyun BY. Natural history and risk factors of atopic dermatitis in children. Allergy Asthma Immunol Res. 2014/11/25. 2015;7(2):101–5. Available from: https://pubmed.ncbi.nlm.nih.gov/25729616
  14. Nutten S. Atopic Dermatitis: Global Epidemiology and Risk Factors. Ann Nutr Metab. 2015;66(Suppl. 1):8–16. Available from: http://dx.doi.org/10.1159/000370220
  15. Eliska N, Thaha MA, Anwar C. Faktor risiko pada dermatitis atopik. J Kedokt dan Kesehat Publ Ilm Fak Kedokt Univ Sriwij. 2015;2(1):143–9.
  16. Keles FF, Pandaleke HEJ, Mawu FO. Profil dermatitis atopik pada anak di Poliklinik Kulit dan Kelamin RSUP Prof. Dr. R. D. Kandou Manado periode Januari 2013 – Desember 2015. e-CliniC. 2016;4(2). Available from: http://dx.doi.org/10.35790/ecl.4.2.2016.14456
  17. Nomura T, Wu J, Kabashima K, Guttman-Yassky E. Endophenotypic Variations of Atopic Dermatitis by Age, Race, and Ethnicity. J Allergy Clin Immunol Pract. 2020;8(6):1840–52. Available from: http://dx.doi.org/10.1016/j.jaip.2020.02.022
  18. Silverberg NB. A practical overview of pediatric atopic dermatitis, part 1: epidemiology and pathogenesis. Cutis. 2016;97(4):267–71.
  19. Kim Y, Blomberg M, Rifas-Shiman SL, Camargo Jr CA, Gold DR, Thyssen JP, et al. Racial/Ethnic Differences in Incidence and Persistence of Childhood Atopic Dermatitis. J Invest Dermatol. 2018/11/08. 2019;139(4):827–34. Available from: https://pubmed.ncbi.nlm.nih.gov/30414911
  20. Berke R, Singh A, Guralnick M. Atopic dermatitis: an overview. Am Fam Physician. 2012;86(1):35–42.
  21. Ottman N, Barrientos-Somarribas M, Fyhrquist N, Alexander H, Wisgrill L, Olah P, et al. Microbial and transcriptional differences elucidate atopic dermatitis heterogeneity across skin sites. Allergy. 2020/10/14. 2021;76(4):1173–87. Available from: https://pubmed.ncbi.nlm.nih.gov/33001460
  22. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9(4):244–53. Available from: https://pubmed.ncbi.nlm.nih.gov/21407241
  23. Bjerre RD, Bandier J, Skov L, Engstrand L, Johansen JD. The role of the skin microbiome in atopic dermatitis: a systematic review. Br J Dermatol. 2017;177(5):1272–8. Available from: http://dx.doi.org/10.1111/bjd.15390
  24. Powers CE, McShane DB, Gilligan PH, Burkhart CN, Morrell DS. Microbiome and pediatric atopic dermatitis. J Dermatol. 2015;42(12):1137–42. Available from: http://dx.doi.org/10.1111/1346-8138.13072
  25. Torres T, Ferreira EO, Gonçalo M, Mendes-Bastos P, Selores M, Filipe P. Update on Atopic Dermatitis. Acta Med Port. 2019;32(9):606–13. Available from: http://dx.doi.org/10.20344/amp.11963
  26. Rangel SM, Paller AS. Bacterial colonization, overgrowth, and superinfection in atopic dermatitis. Clin Dermatol. 2018;36(5):641–7. Available from: http://dx.doi.org/10.1016/j.clindermatol.2018.05.005
  27. Bilal JA, Ahmad MI, Robaee AA Al, Alzolibani AA, Shobaili HA Al, Al-Khowailed MS. Pattern of bacterial colonization of atopic dermatitis in saudi children. J Clin Diagn Res. 2013/09/10. 2013;7(9):1968–70. Available from: https://pubmed.ncbi.nlm.nih.gov/24179911

How to Cite

Paramita, D. A., Khairina, & Lubis, N. Z. . (2022). Bacterial colonization in atopic dermatitis. Bali Medical Journal, 11(3), 1924–1929. https://doi.org/10.15562/bmj.v11i3.3811

HTML
0

Total
0

Share

Search Panel