Skip to main content Skip to main navigation menu Skip to site footer

The Effect of Beta vulgaris L. on the Malondialdehyde Levels in Male Wistar Rats Exposed to Cigarette Smoke

Abstract

Introduction: Oxidative damage can be brought on by inhaling free radicals from cigarette smoke. Malondialdehyde (MDA), a byproduct of lipid peroxidation, is a biomarker for oxidative stress. Beta vulgaris L., sometimes known as beetroot, is a root vegetable with phenolic and betalain chemicals that have antioxidant qualities and can reduce oxidative stress in the body.

Determine how beetroot juice affects male Wistar rats exposed to cigarette smoke regarding their MDA levels.

Methods: 24 samples of male Wistar rats, separated into 4 groups, were utilized in this genuine experimental investigation using a posttest-only control group design. Traditional food and beverages were served to Group N. Two cigarettes were smoked each day by the cigarette smoking group, BV1, and BV2. Beta vulgaris L. juice was also administered to group BV1 at a dose of 8 ml/kg BW per day and to group BV2 at 16 ml/kg BW per day. MDA serum levels were measured using the TBARS technique after 28 days of therapy. The one-way ANOVA and the Games-Howell test were used to evaluate the data.

Result: The group control's mean MDA level was 1,539 ppm; the cigarette smoking group was 3,167 ppm; BV1's was 2,452 ppm, and BV2's was 2,0527 ppm. Between-group control and cigarette smoking group BV1 and BV2, as well as between BV1 and BV2, there were significant differences in MDA levels (p 0,05).

Conclusion: The MDA levels of the groups exposed to cigarette smoke and given beetroot juice were lower than those of the groups exposed to cigarette smoke alone, with the MDA levels of the group given a dosage of 8 ml/kg BW being lower than the group given a dose of 16 ml/kg BW.

References

  1. Balitbangkes Kemenkes R. Laporan Nasional Riskesdas 2018. Lembaga Penerbit Badan Penelitian dan Pengembangan Kesehatan Jakarta. 2019:1-674.
  2. Lavezzi AM. Toxic Effect of cigarette smoke on brainstem nicotinic receptor expression: primary cause of sudden unexplained perinatal death. Toxics. 2018;6(4):63. DOI: 10.3390/toxics6040063.
  3. Goel R, Bitzer ZT, Reilly SM, Bhangu G, Trushin N, Elias RJ, et al. Effect of charcoal in cigarette filters on free radicals in mainstream smoke. Chemical research in toxicology. 2018;31(8):745-51. DOI: 10.1021/acs.chemrestox.8b00092.
  4. Wang X, Li Y, Han L, Li J, Liu C, Sun C. Role of flavonoids in the treatment of iron overload. Frontiers in cell and developmental biology. 2021;9. DOI: 10.3389/fcell.2021.685364.
  5. Juan CA, Pérez de la Lastra JM, Plou FJ, Pérez-Lebeña E. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids, and proteins) and induced pathologies. International Journal of Molecular Sciences. 2021;22(9):4642. DOI: 10.3390/ijms22094642.
  6. Nsonwu-Anyanwu A, Offor S, John I. Cigarette smoke and oxidative stress indices in male active smokers. Reactive Oxygen Species. 2018;5(15):199-208. DOI: 10.20455/ROS.2018.829.
  7. Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. International journal of biomedical science: IJBS 2008;4(2):89.
  8. El-Beltagi HS, Mohamed HI, Megahed BM, Gamal M, Safwat G. Evaluation of some chemical constituents, antioxidant, antibacterial and anticancer activities of Beta vulgaris L. root. Fresenius Environmental Bulletin. 2018;27(9):6369-78. DOI: 10.12691/jpm-7-1-1.
  9. Spiegel M, Gamian A, Sroka Z. Antiradical Activity of Beetroot (Beta vulgaris L.) Betalains. Molecules. 2021;26(9):2439. DOI: 10.3390/molecules26092439.
  10. Vo QV, Nam PC, Bay MV, Thong NM, Cuong ND, Mechler A. Density functional theory study of the role of benzylic hydrogen atoms in the antioxidant properties of lignans. Scientific reports. 2018;8(1):1-10. DOI: 10.1038/s41598-018-30860-5.
  11. Vieira Teixeira da Silva D, dos Santos Baião D, de Oliveira Silva F, Alves G, Perrone D, Mere Del Aguila E, et al. Betanin, a natural food additive: Stability, bioavailability, antioxidant and preservative ability assessments. Molecules. 2019;24(3):458. DOI: 10.3390/molecules24030458.
  12. Egeonu S, Ihentuge C, Okechukwu H, Anibeze C, Akpuaka F. Protective effect of Beta vulgaris on carbon tetrachloride-induced hepatotoxicity in adult Wistar rat. The FASEB Journal. 2018;32:511.6-.6. DOI:10.21474/ijar01/10285.
  13. Edziri H, Jaziri R, Haddad O, Anthonissen R, Aouni M, Missouri M, et al. Phytochemical analysis, antioxidant, anticoagulant and in vitro toxicity and genotoxicity testing of methanolic and juice extracts of Beta vulgaris L. South African Journal of Botany. 2019;126:170-5. DOI: 10.21474/ijar01/10285.
  14. Clarke G, Ting KN, Wiart C, Fry J. High Correlation of 2,2-diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging, Ferric Reducing Activity Potential and Total Phenolics Content Indicates Redundancy in Use of All Three Assays to Screen for Antioxidant Activity of Extracts of Plants from the Malaysian Rainforest. Antioxidants (Basel). 2013 Jan 4;2(1):1-10. DOI: 10.3390/antiox2010001.
  15. Mariotti L.R.B. Lipid Peroxidation (TBARS) in Biological Samples. Basic Protocols in Foods and Nutrition: Springer; 2022. p. 107-13. DOI: 0.1007/978-1-0716-2345-9_7.
  16. Chang C-J, Jou I-M, Wu T-T, Su F-C, Tai T-W. Cigarette smoke inhalation impairs angiogenesis in early bone healing processes and delays fracture union. Bone & joint research. 2020;9(3):99-107. DOI: 10.1302/2046-3758.93.BJR-2019-0089.R1
  17. Siauta D, Unitly AJA, Silahooy VB. Efektivitas Pemberian Seduhan Daun Cengkeh (Syzygium aromaticum L.) terhadap Kadar SGPT dan SGOT Darah Tikus Rattus norvegicus Terpapar Asap Rokok. Biologi Edukasi: Jurnal Ilmiah Pendidikan Biologi. 2021;13(2):87-92.
  18. Olumese FE, Oboh HA. Antioxidant and Antioxidant capacity of raw and processed Nigerian Beetroot (Beta vulgaris). Nigerian Journal of Basic and Applied Sciences. 2016;24(1):35-40. DOI: 10.4314/NJBAS.V24I1.6.
  19. Zhao G, He F, Wu C, Li P, Li N, Deng J, et al. Betaine in inflammation: mechanistic aspects and applications. Frontiers in Immunology. 2018;9:1070. DOI: 10.3389/fimmu.2018.0107.
  20. Chhikara N, Kushwaha K, Sharma P, Gat Y, Panghal A. Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food chemistry. 2019;272:192-200. DOI: 10.1016/j.foodchem.2018.08.022.
  21. Vidal PJ, López-Nicolás JM, Gandía-Herrero F, García-Carmona F. Inactivation of lipoxygenase and cyclooxygenase by natural betalains and semi-synthetic analogues. Food chemistry. 2014;154:246-54. DOI: 10.1016/j.foodchem.2014.01.014.
  22. Kamceva G, Arsova-Sarafinovska Z, Ruskovska T, Zdravkovska M, Kamceva-Panova L, Stikova E. Cigarette Smoking and Oxidative Stress in Patients with Coronary Artery Disease. Open Access Maced J Med Sci. 2016;4(4):636-40. DOI: 10.3889/oamjms.2016.117.
  23. Ranawat P, Kaur N, Koul A. Histopathological and molecular alterations induced by cigarette smoke inhalation in pulmonary tissue of mice and its amelioration by aqueous Ocimum Sanctum leaf extract. 2022. DOI: 10.1615/jenvironpatholtoxicoloncol.v31.i1.20
  24. Joshi B, Singh S, Sharma P, Mohapatra T, Kumar P. Effect of Cigarette Smoking on Selected Antioxidant Enzymes and Oxidative Stress Biomarkers. Journal of Clinical & Diagnostic Research. 2020;14(10).
  25. Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal Biochem. 2017;524:13-30. DOI: 10.1016/j.ab.2016.10.021.
  26. Carrillo C, Rey R, Hendrickx M, Del Mar Cavia M, Alonso-Torre S. Antioxidant Capacity of Beetroot: Traditional vs Novel Approaches. Plant Foods Hum Nutr. 2017;72(3):266-73. DOI: 10.1007/s11130-017-0617-2.
  27. Kumar S, Sarma P, Medhi B, Khanduja KL. Cigarette Smoke-Induced Oxidative Stress in Type I and Type II Lung Epithelial Cells. Oxidative Stress in Lung Diseases: Springer; 2019. p. 115-23. DOI: 10.1007/978-981-13-8413-4_6.
  28. Gulcin İ. Antioxidants and antioxidant methods: An updated overview. Archives of toxicology. 2020;94(3):651-715. DOI: 10.1007/s00204-020-02689-3.
  29. Ceclu L, Nistor O. Red beetroot: Composition and health effects—A review. J Nutr Med Diet Care. 2020;6(1):1-9. DOI: 10.23937/2572-3278.1510043.
  30. Albano E. Alcohol, oxidative stress and free radical damage. Proceedings of the nutrition society. 2006;65(3):278-90. DOI: 10.1079/pns2006496.
  31. Martinez RM, Hohmann MS, Longhi-Balbinot DT, Zarpelon AC, Baracat MM, Georgetti SR, et al. Analgesic activity and mechanism of action of a Beta vulgaris dye enriched in betalains in inflammatory models in mice. Inflammopharmacology. 2020;28(6):1663-75. DOI: 10.1007/s10787-020-00689-4.
  32. Martinez RM, Longhi-Balbinot DT, Zarpelon AC, Staurengo-Ferrari L, Baracat MM, Georgetti SR, et al. Anti-inflammatory activity of betalain-rich dye of Beta vulgaris: effect on edema, leukocyte recruitment, superoxide anion, and cytokine production. Archives of Pharmacal research. 2015;38(4):494-504. DOI: 10.1007/s12272-014-0473-7.

How to Cite

Alya Berliana Suharso, Dewi, P. K., Edward Kurnia Setiawan Limijadi, & Amallia Nuggetsiana Setyawati. (2022). The Effect of Beta vulgaris L. on the Malondialdehyde Levels in Male Wistar Rats Exposed to Cigarette Smoke. Bali Medical Journal, 11(3), 1509–1514. https://doi.org/10.15562/bmj.v11i3.3806

HTML
2

Total
0

Share

Search Panel

Alya Berliana Suharso
Google Scholar
Pubmed
BMJ Journal


Puspita Kusuma Dewi
Google Scholar
Pubmed
BMJ Journal


Edward Kurnia Setiawan Limijadi
Google Scholar
Pubmed
BMJ Journal


Amallia Nuggetsiana Setyawati
Google Scholar
Pubmed
BMJ Journal