Skip to main content Skip to main navigation menu Skip to site footer

The use of Kepok Banana Stem (Musa paradisiaca) in diabetes rats does not reduce Malondialdehyde (MDA) levels

  • Ratna Indriawati ,
  • Martina Dyah Rahmawati ,
  • Titiek Hidayati ,


Introduction: The prevalence of diabetes mellitus (DM) is still high and is expected to continue to increase. An increase follows this increase in the number of side events, so innovation is needed in DM therapy. DM induces oxidative stress so antioxidants can be an alternative therapy for DM. One source of antioxidants whose use is still limited is the banana plant, especially the banana stem. This study aimed to determine the effectiveness of kepok banana stem extract (Musa paradisiaca Var. Balbisiana colla) on MDA levels in diabetic rats.

Methodology/Approach: The study used a post-test-only control group design on 24 male rats (Rattus novergicus) Sprague Dawley strain with a bodyweight of 150-250 grams and ± eight weeks old. Rats were divided into four groups, namely the metformin treatment for positive control, distilled water for the negative control, and stem banana extract dose of 200 mg/kg BW and 250 mg/kg BW as treatment group of mice induced diabetes using STZ-NA and given treatment according to the group for 14 days. MDA level measurement using the TBARS method on rat liver. Data were analyzed using the One Way ANOVA comparison test.

Results: MDA levels in the positive control group, negative control, treatment 1 (200 mg), and treatment 2 (250 mg) were 0.9790 + 0.52 mg/dl, 0.7533 + 0.58 mg/dl, 1.2510 + 0.52 mg/dl, 1.5175 + 0.53 mg /dl. There was no statistically significant difference in MDA levels between groups (p=0.182), but there was a decrease in blood glucose levels in the group treatment. The highest decrease in blood glucose levels was in the dose treatment group, 250 mg/kg BW.

Conclusion:The treatment of kepok banana stem extract (Musa paradisiaca Var. Balbisinia colla) for 14 days at 200mg/kg BW and 250mg/kg BW increased malondialdehyde (MDA) levels, although not statistically significant.


  1. Ramu R, Shirahatti PS, Dhanabal SP, Zameer F, Dhananjaya BL, Nagendra Prasad MN. Investigation of antihyperglycaemic activity of banana (Musa sp. Var. Nanjangud rasa bale) flower in normal and diabetic rats. Pharmacogn Mag. 2017;13(51):S417–23.
  2. Mishra R, Chesi A, Cousminer DL, Hawa MI, Bradfield JP, Hodge KM, et al. Relative contribution of type 1 and type 2 diabetes loci to the genetic etiology of adult-onset, non-insulin-requiring autoimmune diabetes. BMC Med. 2017;15(1):1.
  3. Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020;21(17):1–34.
  4. Henriksen EJ, Diamond-Stanic MK, Marchionne EM. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic Biol Med. 2011;51(5):993–9.
  5. Ahangarpour A, Oroojan AA, Khorsandi L, Kouchak M, Badavi M. Antioxidant effect of myricitrin on hyperglycemia-induced oxidative stress in C2C12 cell. Cell Stress Chaperones. 2018;23(4):773–81.
  6. Padberg I, Peter E, González-Maldonado S, Witt H, Mueller M, Weis T, et al. A new metabolomic signature in type-2 diabetes mellitus and its pathophysiology. PLoS One. 2014;9(1).
  7. Nucci C, Di Pierro D, Varesi C, Ciuffoletti E, Russo R, Gentile R, et al. Increased malondialdehyde concentration and reduced total antioxidant capacity in aqueous humor and blood samples from patients with glaucoma. Mol Vis. 2013;19(August):1841–6.
  8. Yoshida J, Eguchi E, Nagaoka K, Ito T, Ogino K. Association of night eating habits with metabolic syndrome and its components: A longitudinal study. BMC Public Health. 2018;18(1):1–12.
  9. He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cell Physiol Biochem. 2017;44(2):532–53.
  10. Miao L, St. Clair DK. Regulation of superoxide dismutase genes: Implications in disease. Free Radic Biol Med. 2009;47(4):344–56.
  11. Robson R, Kundur AR, Singh I. Oxidative stress biomarkers in type 2 diabetes mellitus for assessment of cardiovascular disease risk. Diabetes Metab Syndr Clin Res Rev. 2018;12(3):455–62.
  12. Indriawati R. The hepatoprotective capacity of steeping kersen leaves (Muntingia calabura l.) on diabetic rat. Electron J Gen Med. 2020;17(5):5–8.
  13. Karam BS, Chavez-Moreno A, Koh W, Akar JG, Akar FG. Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes. Cardiovasc Diabetol. 2017;16(1):17–20.
  14. Chen J, Stimpson SE, Fernandez-Bueno GA, Mathews CE. Mitochondrial Reactive Oxygen Species and Type 1 Diabetes. Antioxidants Redox Signal. 2018;29(14):1361–72.
  15. Indriawati R, Nizar A. Antioxidant Potential of Kersen Leaves (Muntingia Calabura L.) Leaves to Increase Endogenous Glutathione Peroxidase (GPx) Enzymes in Diabetic Rats. E3S Web Conf. 2020;202:1–6.
  16. Mas-Bargues C, Escrivá C, Dromant M, Borrás C, Viña J. Lipid peroxidation as measured by chromatographic determination of malondialdehyde. Human plasma reference values in health and disease. Arch Biochem Biophys. 2021;709.
  17. Indriawati R, Atiyah FU. Antihyperglycemic and Hypolipidemic Potential of Kepok Banana Peel in Diabetic Rats. IOP Conf Ser Earth Environ Sci. 2022;985(1).
  18. Deeds MC, Anderson JM, Armstrong AS, Gastineau DA, Hiddinga HJ, Jahangir A, et al. Single dose streptozotocin-induced diabetes: Considerations for study design in islet transplantation models. Lab Anim. 2011;45(3):131–40.
  19. Abdel Aziz SM, Ahmed OM, Abd El-Twab SM, Al-Muzafar HM, Amin KA, Abdel-Gabbar M. Antihyperglycemic Effects and Mode of Actions of Musa paradisiaca Leaf and Fruit Peel Hydroethanolic Extracts in Nicotinamide/Streptozotocin-Induced Diabetic Rats. Evidence-based Complement Altern Med. 2020;2020.
  20. Ahmed OM, Abd El-Twab SM, Al-Muzafar HM, Adel Amin K, Abdel Aziz SM, Abdel-Gabbar M. Musa paradisiaca L. leaf and fruit peel hydroethanolic extracts improved the lipid profile, glycemic index and oxidative stress in nicotinamide/streptozotocin-induced diabetic rats. Vet Med Sci. 2021;7(2):500–11.
  21. Liu J, Li Q, Chen J, Jiang Y. Revealing further insights on chilling injury of postharvest bananas by untargeted lipidomics. Foods. 2020;9(7):1–15.
  22. Toffoli B, Fabris B, Bartelloni G, Bossi F, Bernardi S. Dyslipidemia and Diabetes Increase the OPG/TRAIL Ratio in the Cardiovascular System. Mediators Inflamm. 2016;2016.
  23. Indriawati R, Nugroho A, Sciences H, Yogyakarta UM. Antioxidant Potential of Kersen LeavesSteeping ( Muntingia calabura L .) Against Endogenous Enzyme Superoxide Dismutase ( SOD ) Levels in Diabetes Mellitus Rats. 2021;12:628–35.
  24. Phacharapiyangkul N, Thirapanmethee K, Sa-Ngiamsuntorn K, Panich U, Lee CH, Chomnawang MT. Effect of sucrier Banana peel extracts on inhibition of melanogenesis through the ERK signaling pathway. Int J Med Sci. 2019;16(4):602–6.
  25. Indriawati R, Vinivera V, Wibowo T. Hypoglycemic and Hypolipidemic Effects Red Rosella Flower Steeping on Diabetic Rats. 2021;33(ICoSIHSN 2020):114–8.
  26. Luc K, Schramm-Luc A, Guzik TJ, Mikolajczyk TP. Oxidative stress and inflammatory markers in prediabetes and diabetes. J Physiol Pharmacol. 2019;70(6):809–24.
  27. Activities A, Stem OF, Alloxan ON, Diabetic I. Research Article Anti-diabetic and Antioxidant Activities of Stem Juice of Musa Paradisiaca on Alloxan Induced Diabetic Rats. :167–76.
  28. Dikshit P, Tyagi MK, Shukla K, Gambhir JK, Shukla R. Antihypercholesterolemic and antioxidant effect of sterol rich methanol extract of stem of Musa sapientum (banana) in cholesterol fed wistar rats. J Food Sci Technol [Internet]. 2016;53(3):1690–7. Available from:

How to Cite

Indriawati, R., Rahmawati , M. D. ., & Hidayati, T. . (2022). The use of Kepok Banana Stem (Musa paradisiaca) in diabetes rats does not reduce Malondialdehyde (MDA) levels. Bali Medical Journal, 11(3), 1636–1639.




Search Panel

Ratna Indriawati
Google Scholar
BMJ Journal

Martina Dyah Rahmawati
Google Scholar
BMJ Journal

Titiek Hidayati
Google Scholar
BMJ Journal