Skip to main content Skip to main navigation menu Skip to site footer

The The outcome of sternum healing among diabetic patients undergoing open heart surgery: a literature review

  • Taufik Nur Yahya ,
  • Yan Efrata Sembiring ,
  • Soebagijo Adi Soelistijo ,


Background: As part of the surgery, sternotomy is a common technique to expose the underlying organs, allowing surgeons to explore the targeted organ. Despite the benefits offered, it has several considerable complications; one of them is wound healing defect. The impairment of sternal wound healing after sternotomy could be superficial and/or deep. This condition is influenced by many factors, including diabetes mellitus, obesity, and other comorbidities. These anomalies will affect the normal healing process of the bone and other connective tissue, particularly after a major invasive event, such as in sternotomy. This study aimed to review the outcome of sternum healing among diabetics that underwent heart surgery with a sternotomy approach.

Methods: Works of literature reviewed in this study were obtained from Pubmed and Google Scholar databases starting from 1992 until April 2022. The keywords used were ‘sternal wound healing’, ‘cardiac surgery’, and ‘diabetes mellitus’. An advanced search based on the exact phrases was conducted on Google Scholar. Gathered kinds of literature were then selected based on relevancy.

Results: The majority of articles reviewed were observational, and most of them had CABG as a part of open heart surgery, followed by valvular and aortic surgeries and others. The incidence of impaired sternal healing and other complications (superficial and/or deep) was more commonly seen among patients with diabetes. Most studies also reported a significant correlation between DM and the incidence of impaired sternal healing, suggesting that DM was a significant predictor of it.

Conclusion: Diabetes mellitus is a medical condition that must be taken into account among the candidates for open heart surgery, particularly if it is poorly controlled. The Hyperglycaemic state experienced by the patients will lead to multiorgan damage and immunological dysfunction that could affect the healing process of the sternum.


  1. Silva JAD, Souza ECF, Echazú Böschemeier AG, Costa CCMD, Bezerra HS, Feitosa EELC. Diagnosis of diabetes mellitus and living with a chronic condition: participatory study. BMC Public Health. 2018;18(1):699. Published 2018 Jun 5. doi:10.1186/s12889-018-5637-9.
  2. Kharroubi AT, Darwish HM. Diabetes mellitus: The epidemic of the century. World J Diabetes. 2015;6(6):850-867. doi:10.4239/wjd.v6.i6.850.
  3. Marchelia LZ, Purwati P, Wironegoro R. High blood glucose level increase cardiovascular disease risk in type 2 diabetes mellitus. Folia Medica Indonesiana. 2016;52(2):127-30.
  4. Artha IMJR, Bhargah A, Dharmawan NK, Pande UW, Triyana KA, Mahariski PA, Yuwono J, Bhargah V, Prabawa IPY, Manuaba IBAP, Rina IK. High level of individual lipid profile and lipid ratio as a predictive marker of poor glycemic control in type-2 diabetes mellitus. Vasc Health Risk Manag. 2019 Jun 5;15:149-157. doi: 10.2147/VHRM.S209830.
  5. Ioacara S, Popescu AC, Tenenbaum J, et al. Acute Myocardial Infarction Mortality Rates and Trends in Romania between 1994 and 2017. Int J Environ Res Public Health. 2019;17(1):285. Published 2019 Dec 31. doi:10.3390/ijerph17010285.
  6. Bachar BJ, Manna B. Coronary Artery Bypass Graft [Internet]. StatPearls. 2021. Available from:
  7. Amal I, Soebroto H, Puruhito. Comparison of bone wax and chitosan usage on post-sternotomy bone healing. Asian Cardiovasc Thorac Ann. 2021;29(3):203-207. doi:10.1177/0218492320984097.
  8. Pezzella AT. Global aspects of cardiothoracic surgery with focus on developing countries. Asian Cardiovasc Thorac Ann. 2010;18(3):299-310. doi:10.1177/0218492310370060.
  9. Boudoulas KD, Ravi Y, Garcia D, et al. Type of Valvular Heart Disease Requiring Surgery in the 21st Century: Mortality and Length-of-Stay Related to Surgery. Open Cardiovasc Med J. 2013;7:104-109. Published 2013 Sep 4. doi:10.2174/1874192420130902001.
  10. Cope G. The effects of smoking on wound healing. Wounds UK. 2014;10(2):10–8.
  11. Lemaignen A, Birgand G, Ghodhbane W, et al. Sternal wound infection after cardiac surgery: incidence and risk factors according to clinical presentation. Clin Microbiol Infect. 2015;21(7):674.e11-674.e6.74E18. doi:10.1016/j.cmi.2015.03.025.
  12. Sofer D, Gurevitch J, Shapira I, et al. Sternal wound infections in patients after coronary artery bypass grafting using bilateral skeletonized internal mammary arteries. Ann Surg. 1999;229(4):585-590. doi:10.1097/00000658-199904000-00020.
  13. Oswald I, Boening A, Pons-Kuehnemann J, Grieshaber P. Wound Infection after CABG Using Internal Mammary Artery Grafts: A Meta-Analysis. Thorac Cardiovasc Surg. 2021;69(7):639-648. doi:10.1055/s-0040-1713662.
  14. Balachandran S, Lee A, Denehy L, et al. Risk Factors for Sternal Complications After Cardiac Operations: A Systematic Review. Ann Thorac Surg. 2016;102(6):2109-2117. doi:10.1016/j.athoracsur.2016.05.047.
  15. Shin YC, Kim SH, Kim DJ, et al. Sternal healing after coronary artery bypass grafting using bilateral internal thoracic arteries: assessment by computed tomography scan. Korean J Thorac Cardiovasc Surg. 2015;48(1):33-39. doi:10.5090/kjtcs.2015.48.1.33.
  16. Heilmann C, Stahl R, Schneider C, et al. Wound complications after median sternotomy: a single-centre study. Interact Cardiovasc Thorac Surg. 2013;16(5):643-648. doi:10.1093/icvts/ivs554.
  17. Gansera B, Delalic A, Eszlari E, Eichinger W. 14-Year Results of Bilateral versus Single Internal Thoracic Artery Grafts for Left-Sided Myocardial Revascularization in Young Diabetic Patients. Thorac Cardiovasc Surg. 2017;65(4):272-277. doi:10.1055/s-0036-1593864.
  18. Zalewska-Adamiec M, Bachorzewska-Gajewska H, Malyszko J, et al. Impact of diabetes on mortality and complications after coronary artery by-pass graft operation in patients with left main coronary artery disease. Adv Med Sci. 2014;59(2):250-255. doi:10.1016/j.advms.2014.02.006.
  19. Nakano J, Okabayashi H, Hanyu M, et al. Risk factors for wound infection after off-pump coronary artery bypass grafting: should bilateral internal thoracic arteries be harvested in patients with diabetes?. J Thorac Cardiovasc Surg. 2008;135(3):540-545. doi:10.1016/j.jtcvs.2007.11.008.
  20. Peterson MD, Borger MA, Rao V, Peniston CM, Feindel CM. Skeletonization of bilateral internal thoracic artery grafts lowers the risk of sternal infection in patients with diabetes. J Thorac Cardiovasc Surg. 2003;126(5):1314-1319. doi:10.1016/s0022-5223(03)00808-0.
  21. Zacharias A, Habib RH. Factors predisposing to median sternotomy complications. Deep vs superficial infection. Chest. 1996;110(5):1173-1178. doi:10.1378/chest.110.5.1173.
  22. Pevni D, Uretzky G, Mohr A, et al. Routine use of bilateral skeletonized internal thoracic artery grafting: long-term results. Circulation. 2008;118(7):705-712. doi:10.1161/CIRCULATIONAHA.107.756676.
  23. Zuckermann A, Barten MJ. Surgical wound complications after heart transplantation. Transpl Int. 2011;24(7):627-636. doi:10.1111/j.1432-2277.2011.01247.x.
  24. Lazar HL. The risk of mediastinitis and deep sternal wound infections with single and bilateral, pedicled and skeletonized internal thoracic arteries. Ann Cardiothorac Surg. 2018;7(5):663-672. doi:10.21037/acs.2018.06.11.
  25. Fu RH, Weinstein AL, Chang MM, Argenziano M, Ascherman JA, Rohde CH. Risk factors of infected sternal wounds versus sterile wound dehiscence. J Surg Res. 2016;200(1):400-407. doi:10.1016/j.jss.2015.07.045.
  26. Gurevitch J, Paz Y, Shapira I, et al. Routine use of bilateral skeletonized internal mammary arteries for myocardial revascularization. Ann Thorac Surg. 1999;68(2):406-412. doi:10.1016/s0003-4975(99)00460-9.
  27. Shaheen Y, Kasab I, Galal M. Comparative Study Between the effect of Skeletonized and Pedicled Internal Thoracic Artery on sternum healing in Patient Undergoing CABG. Benha Med J. 2020;0(0):0–0.
  28. Zahiri HR, Lumpkins K, Kelishadi SS, et al. Significant predictors of complications after sternal wound reconstruction: a 21-year experience. Ann Plast Surg. 2012;69(4):439-441. doi:10.1097/SAP.0b013e318231d1ef.
  29. Lenz K, Brandt M, Fraund-Cremer S, Cremer J. Coronary artery bypass surgery in diabetic patients - risk factors for sternal wound infections. GMS Interdiscip Plast Reconstr Surg DGPW. 2016;5:Doc18. Published 2016 Jul 28. doi:10.3205/iprs000097.
  30. Savage EB, Grab JD, O'Brien SM, et al. Use of both internal thoracic arteries in diabetic patients increases deep sternal wound infection. Ann Thorac Surg. 2007;83(3):1002-1006. doi:10.1016/j.athoracsur.2006.09.094.
  31. Fakih MG, Sharma M, Khatib R, et al. Increase in the rate of sternal surgical site infection after coronary artery bypass graft: a marker of higher severity of illness. Infect Control Hosp Epidemiol. 2007;28(6):655-660. doi:10.1086/518347.
  32. Sakamoto H, Fukuda I, Oosaka M, Nakata H. Risk factors and treatment of deep sternal wound infection after cardiac operation. Ann Thorac Cardiovasc Surg. 2003;9(4):226-232.
  33. Kieser TM, Rose MS, Aluthman U, Montgomery M, Louie T, Belenkie I. Toward zero: deep sternal wound infection after 1001 consecutive coronary artery bypass procedures using arterial grafts: implications for diabetic patients. J Thorac Cardiovasc Surg. 2014;148(5):1887-1895. doi:10.1016/j.jtcvs.2014.02.022.
  34. Dai C, Lu Z, Zhu H, Xue S, Lian F. Bilateral internal mammary artery grafting and risk of sternal wound infection: evidence from observational studies. Ann Thorac Surg. 2013;95(6):1938-1945. doi:10.1016/j.athoracsur.2012.12.038.
  35. Liu M, Weiss MA, Arunagiri A, et al. Biosynthesis, structure, and folding of the insulin precursor protein. Diabetes Obes Metab. 2018;20 Suppl 2(Suppl 2):28-50. doi:10.1111/dom.13378.
  36. Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev. 2018;98(4):2133-2223. doi:10.1152/physrev.00063.2017.
  37. Yee LD, Mortimer JE, Natarajan R, Dietze EC, Seewaldt VL. Metabolic Health, Insulin, and Breast Cancer: Why Oncologists Should Care About Insulin. Front Endocrinol (Lausanne). 2020;11:58. Published 2020 Feb 20. doi:10.3389/fendo.2020.00058.
  38. DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet. 2018;391(10138):2449-2462. doi:10.1016/S0140-6736(18)31320-5.
  39. Lucier J, Weinstock RS. Diabetes Mellitus Type 1. In: StatPearls. Treasure Island (FL): StatPearls Publishing; May 11, 2022.
  40. Bowden S. Partial Remission (honeymoon phase) in Type 1 Diabetes Mellitus. 2017. 10.2174/9781681089348121070001.
  41. Pratley RE. The early treatment of type 2 diabetes. Am J Med. 2013;126(9 Suppl 1):S2-S9. doi:10.1016/j.amjmed.2013.06.007.
  42. Saini V. Molecular mechanisms of insulin resistance in type 2 diabetes mellitus. World J Diabetes. 2010;1(3):68-75. doi:10.4239/wjd.v1.i3.68.
  43. Romadhon PZ, Sutjahjo A, Novida H, Soelistijo SA, Wibisono S, Prajitno JH et al. HBA1C and plasma transforming growth factor-beta 1 in type-2 diabetes mellitus patients. New Armenian Medical Journal. 2019;13(1):69-73.
  44. Baltzis D, Eleftheriadou I, Veves A. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Adv Ther. 2014;31(8):817-836. doi:10.1007/s12325-014-0140-x.
  45. Moemen, L.A., Abdel Hamid, M.A., Wahab, S.A. et al. Role of advanced glycation end products and sorbitol dehydrogenase in the pathogenesis of diabetic retinopathy. Bull Natl Res Cent 44. 2020;58.
  46. Berbudi A, Rahmadika N, Tjahjadi AI, Ruslami R. Type 2 Diabetes and its Impact on the Immune System. Curr Diabetes Rev. 2020;16(5):442-449. doi:10.2174/1573399815666191024085838.
  47. Wibowo H, Widiyanti P. The Effect of Diclofenac Sodium on Callus Formation in White Male Rat (Rattus norvegicus) Cruris Fracture Healing. Folia Medica Indonesiana (FMI). 2022;58(2):108-12.
  48. Oryan A, Monazzah S, Bigham-Sadegh A. Bone injury and fracture healing biology. Biomed Environ Sci. 2015;28(1):57-71. doi:10.3967/bes2015.006.
  49. Bigham-Sadegh A, Oryan A. Basic concepts regarding fracture healing and the current options and future directions in managing bone fractures. Int Wound J. 2015;12(3):238-247. doi:10.1111/iwj.12231.
  50. Kemmler J, Bindl R, McCook O, et al. Exposure to 100% Oxygen Abolishes the Impairment of Fracture Healing after Thoracic Trauma. PLoS One. 2015;10(7):e0131194. Published 2015 Jul 6. doi:10.1371/journal.pone.0131194.
  51. Parker R, Adams JL, Ogola G, et al. Current activity guidelines for CABG patients are too restrictive: comparison of the forces exerted on the median sternotomy during a cough vs. lifting activities combined with valsalva maneuver. Thorac Cardiovasc Surg. 2008;56(4):190-194. doi:10.1055/s-2008-1038470.
  52. Jiao H, Xiao E, Graves DT. Diabetes and Its Effect on Bone and Fracture Healing. Curr Osteoporos Rep. 2015;13(5):327-335. doi:10.1007/s11914-015-0286-8.
  53. Yao D, Brownlee M. Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes. 2010;59(1):249-255. doi:10.2337/db09-0801.
  54. Marin C, Luyten FP, Van der Schueren B, Kerckhofs G, Vandamme K. The Impact of Type 2 Diabetes on Bone Fracture Healing. Front Endocrinol (Lausanne). 2018;9:6. Published 2018 Jan 24. doi:10.3389/fendo.2018.00006.
  55. Royse, Alistair & Royse, Colin & Boggett, Stuart & Clarke-Errey, Sandy & Pawanis, Zulfayandi. Why and how to achieve total arterial revascularisation in coronary surgery. Vessel Plus. 2020. 10.20517/2574-1209.2019.34.

How to Cite

Nur Yahya, T., Sembiring, Y. E., & Soelistijo, S. A. (2022). The The outcome of sternum healing among diabetic patients undergoing open heart surgery: a literature review. Bali Medical Journal, 11(2), 818–826.




Search Panel

Taufik Nur Yahya
Google Scholar
BMJ Journal

Yan Efrata Sembiring
Google Scholar
BMJ Journal

Soebagijo Adi Soelistijo
Google Scholar
BMJ Journal