Skip to main content Skip to main navigation menu Skip to site footer

Effectivity of uv-light exposure on bacterial and fungal growth in Channa striata collagen-chitosan composite dressing for wound healing

  • Ary Andini ,
  • Endah Prayekti ,
  • Nur Indah Kamaliyah ,
  • Nur Halimah ,

Abstract

Introduction: Channa striata collagen-chitosan wound dressing (3:1 v/v) was founded contaminate by bacterial and fungal. Therefore, to suppress bacterial and fungal contamination in Channa striata collagen-chitosan composite dressing, it needs several efforts such as sterilization under Ultra-Violet Light Exposure. The study aimed to determine UV-light exposure duration to supress bacterial and fungal growth on C. striata collagen-chitosan composite dressing.

Methods: C. striata collagen was extracted from skin and scales using 2% HCl for 48 hours, then neutralized using NaOH 1 M until collagen fibers appeared. Chitosan powder dissolved in 2% acetic acid. Afterward C. striata collagen and chitosan liquid (1:3 v/v) were mixed and formed until wound dressing was reached. Wound dressing was sterilized under UV exposure for 0, 5, 10, 15, and 30 minutes. Chitosan dressing was used as a negative control.

Results: The results of the study showed that the total number of bacteria and fungi decreased significantly with increasing time of exposure of UV light on composites dressing with a value of p=0.001 for bacterial growth and a value of p= 0.005 for fungus growth. The UV exposure on collagen-chitosan dressing to reduce bacterial and fungal growth proved effective in 10 minutes.

Conclusions: The UV light exposure treatment can reduce bacterial and fungal contamination on collagen-chitosan composites on each addition duration exposure descriptively.

References

  1. Lei J, Sun L, Li P, Zhu C, Lin Z, Mackey V, et al. The Wound Dressings and Their Applications in Wound Healing and Management. Heal Sci J. 2019;13:1–8.
  2. Dhivya S, Vijaya V, Santhini E. Review article Wound dressings – a review. BioMedicine. 2015;5(4):24–8.
  3. Patrulea V, Ostafe V, Borchard G, Jordan O. Chitosan as a starting material for wound healing applications. Eur J Pharm Biopharm. 2015;97(November):417–26.
  4. Andini A, Prayekti E, Dyah Wulandari D, Nidianti E. Cytotoxicity Assay Using Brine Shrimp Lethality Test on Collagen-Chitosan Wond Dressing Sterilized By Ultraviolet Light. Indones J Med Lab Sci Technol. 2020;2(1):21–6.
  5. Rahayu P, Marcelline F, Sulistyaningrum E, Suhartono MT, Tjandrawinata RR. Potential effect of striatin (DLBS0333), a bioactive protein fraction isolated from Channa striata for wound treatment. Asian Pac J Trop Biomed. 2016;6(12):1001–7.
  6. Issains FB, Trinanda AF, Basyir AM, Benaya A, Herman A, Issains FB, et al. Extraction of collagen Type-I from snakehead fish skin ( Channa striata ) and synthesis of biopolymer for wound dressing Extraction of Collagen Type-I from Snakehead Fish Skin ( Channa striata ) and Synthesis of Biopolymer for Wound Dressing. In: AIP Conference Proceedings 2193. 2019.
  7. Zhang F, Wang A, Li Z, He S, Shao L. Preparation and Characterisation of Collagen from Freshwater Fish Scales. Food Nutr Sci. 2011;02(08):818–23.
  8. Halim AS, Nor FM, Saad AZM, Nasir NAM, Norsa B, Ujang Z. Efficacy of chitosan derivative films versus hydrocolloid dressing on superficial wounds. J Taibah Univ Med Sci. 2018;13(6):512–20.
  9. Kasaai MR. Chitosan-Based Materials for Wound Healing and Tissue Engineering : An Short Communication Chitosan-Based Materials for Wound Healing and Tissue Engineering : An Overview on their Properties and Applications. J Biotechnol Bioresearch. 2019;2(1).
  10. Moutinho I, Oliveira I da C, Santos MC, Vasconcelos M, Portela AI. Different Chitosan-Based Biomaterials and their Biomedical Applications. Eur J Med Res Clin Trials. 2019;1(101).
  11. Andini A, Prayekti E. Chitosan As Antifungal in Channa Striata Collagenchitosan for Wound Healing. Med Heal Sci J. 2019;3(2).
  12. Andini A, Prayekti E. Activity of Chitosan as Antibacterial in Chitosan-Collagen Composite Dressing. In: The 1st International Conference Brawijaya Dentistry. Malaysian Journal of Medicine and Health Sciences Vol.15 Supp 7; 2019. p. 32.
  13. Katara G, Hemvani N, Chitnis S, Chitnis V, Chitnis D. Surface Disinfection by Exposure to Germidal UV Light. Indian J Med Microbiol. 2008;26(3):241–2.
  14. Tangsadthakun C, Kanokpanont S. Properties of collagen / chitosan scaffolds for skin tissue engineering Properties of Collagen / Chitosan Scaffolds for Skin Tissue Engineering. J Met Mater Miner. 2006;16(1).
  15. Susanto A, Susanah S, Priosoeryanto BP, Satari MH, Komara I. The effect of the chitosan ‑ collagen membrane on wound healing process in rat mandibular defect. Indian Soc Periodontol. 2019;113–8.
  16. Cheba BA. Chitin and Chitosan : Marine Biopolymers with Unique Properties and Versatile Applications Chitin and Chitosan : Marine Biopolymers with Unique Properties and Versatile Applications. Glob J Biotechnol Biochem. 2011;6(3):149–53.
  17. Karwasra R, Sharma N, Sciences A. A Comparative Study of Chitosan Gel and Soframycin in the Management of Wounds. J Low Extrem Wounds. 2020;19(2):148–57.
  18. Xing K, Xing Y, Liu Y, Zhang Y, Shen X, Li X, et al. Fungicidal effect of chitosan via inducing membrane disturbance against Ceratocystis fimbriata Fungicidal e ff ect of chitosan via inducing membrane disturbance against Ceratocystis fi mbriata. Carbohydr Polym. 2018;192(March):95–103.
  19. Tan H, Ma R, Lin C, Liu Z, Tang T. Quaternized Chitosan as an Antimicrobial Agent : Antimicrobial Activity , Mechanism of Action and Biomedical Applications in Orthopedics. Int J Mol Sci. 2013;14:1854–69.
  20. Ziani K, Fernandez-Pan I, Maite R, Mate JI. Antifungal activity of films and solutions based on chitosan against typical seed fungi. Food Hydrocoll. 2009;23(8):2309–14.
  21. Sugireng. Isolasi dan Seleksi Bakteri Proteolitik Lokal yang Berpotensi dalam Ekstraksi Kolagen dari Sisik Ikan Gabus ( Channa striata ). Biowallacea. 2016;3(2):444–54.
  22. Cahyonugroho OH. Pengaruh Intensitas Sinar Ultraviolet dan Pengadukan terhadap Reduksi Jumlah Bakteri E.coli. J Ilm Tek Lingkung. 2010;2(1):18–23.
  23. Zelle MR, Hollaender A. Effects of Radiation on Bacteria. Radiat Biol. 1955;2:365–430.
  24. Jariashvili K, Madhan B, Brodsky B, Kuchava A, Namicheishvili L, Metreveli N. Uv damage of collagen: Insights from model collagen peptides. Biopolymers. 2012;97(3):189–98.
  25. Yupitawati A. Uji Aktivitas Anti Aging Tetrahidrokurkumin , Ekstrak Pegagan ( Centella asiatica ), Dan Kombinasi Tetrahidrokurkumin-Ekstrak Pegagan. Universitas Muhammadiyah Purwokerto; 2017.
  26. Ariyadi T, Dewi S. Pengaruh Sinar Ultra Violet Terhadap Pertumbuhan Bakteri Bacillus sp. Sebagai Bakteri Kontaminan. J Kesehat (Bandar Lampung). 2009;2(2):20–5.
  27. Rahayu LS. Pengendalian Pertumbuhan Bakteri Staphylococcus aureus Dengan Variasi Jarak Sinar Ultra Violet. Universitas Muhammadiyah Semarang; 2017.
  28. Gostine A, Gostine D, Donohue C, Carlstrom L. Evaluating the effectiveness of ultraviolet-C lamps for reducing keyboard contamination in the intensive care unit : A longitudinal analysis. AJIC Am J Infect Control. 2016;44(10):1089–94.
  29. Li X, Yang D, Cai M. New analysis method for radiation modeling and sterilization effect of UVC-LED module New analysis method for radiation modeling and sterilization effect of UVC-LED module. IOP Conf Sci Mater Eng. 2018;452.
  30. Cheng Y, Chen H, Alberto L, Basurto S, Protasenko V V, Bharadwaj S, et al. Inactivation of Listeria and E . coli by Deep-UV LED : effect of substrate conditions on inactivation kinetics. Sci Rep. 2020;10(3411):1–14.
  31. Andersen BM, Bånrud H, Bøe E, Bjordal O, Drangsholt F, Andersen BM, et al. Comparison of UV C Light and Chemicals for Disinfection. Infect Control Hosp Epidemiol. 2006;27(7):729–34.
  32. Martin S., Dunn C, Freihaut J, Bahnfleth W., Lau J, Nedeljkovic-Davidovic A. Ultraviolet germicidal irradiation: Current best practices. ASHRAE J. 2008;50(8).
  33. Walker RW, Markillie LM, Colotelo AH, Geist DR, Gay ME, Woodley CM, et al. Ultraviolet radiation as disinfection for fish surgical tools. Anim Biotelemetry. 2013;14:1–11.
  34. Ariyadi T, Dewi SS. Pengaruh Sinar Ultra Violet terhadap Pertumbuhan Bakteri Bacillus sp. sebagai Bakteri Kontaminan. J Ilmu Kesehat. 2009;2(2):20–5.
  35. Yang J, Wu U, Tai H. ScienceDirect Effectiveness of an ultraviolet-C disinfection system for reduction of healthcare- associated pathogens. J Microbiol Immunol Infect. 2019;52:487–93.

How to Cite

Andini, A. ., Prayekti, E., Kamaliyah, N. I., & Halimah, N. (2022). Effectivity of uv-light exposure on bacterial and fungal growth in Channa striata collagen-chitosan composite dressing for wound healing. Bali Medical Journal, 11(3), 1130–1135. https://doi.org/10.15562/bmj.v11i3.3497

HTML
1

Total
1

Share

Search Panel