Skip to main content Skip to main navigation menu Skip to site footer

Identification of PST 10 bacterial isolate with ?-hemolysis characteristic isolated from pig's tonsil

  • Hamong Suharsono ,
  • I Wayan Suardana ,
  • Rizki Kusuma Putri ,

Abstract

Background: Pig's tonsil is one of the entry points and habitat of commensal microbes and pathogenic bacteria, both Gram-positive and Gram-negative bacteria. Recently, a human meningitis outbreak has reported at Sibang Kaja, Badung-Bali. The cause of this outbreak has been suspected due to the consumption of pig-derived foods. The outbreak was known to be caused by Gram-positive ?-hemolytic bacteria. Based on this fact, PST 10 bacterial isolate with similar characteristics to the outbreak caused interesting identification.

Method: PST 10 isolate was cultivated in a specific medium 5% defibrinated sheep blood agar plate. Subsequently, Gram staining, catalase, oxidase, salt tolerance (6% NaCl), and hemolysis test. This presumptive isolation was then conventionally identified by KIT API 20 STREP and molecularly using the 16S rRNA gene.

Results: PST 10 isolate was identified as Enterococcus faecium using KIT API 20 STREP. Furthermore, the 16S rRNA gene sequencing analysis shows that the isolate has 99.6% similarities with Enterococcus faecalis (MG543832). The isolate shares the same clade in the phylogenetic tree analysis with a 100% bootstrap value.

Conclusion: The high sensitivity in molecular identification mainly to distinguish close species using phenotypic approaches, PST 10 isolate was concluded as Enterococcus faecalis.

References

  1. Kernaghan S, Bujold AR and MacInnes JI. The microbiome of the soft palate of swine. Anim Health Res Rev 2012; 13: 110-120. DOI: 10.1017/S1466252312000102.
  2. Lowe BA, Marsh TL, Isaacs-Cosgrove N, et al. Microbial communities in the tonsils of healthy pigs. Vet Microbiol 2011; 147: 346-357. DOI: 10.1016/j.vetmic.2010.06.025.
  3. Salasia SIO, Haryanto BD, Suarjana IGK, et al. The Zoonotical Potention of Streptococcus equi subsp. zooepidemicus: Characterization of Human, Monkey and Pig Isolates in Bali. Sain Veteriner 2002; 20: 48-53. DOI: 10.22146/jsv.392.
  4. Abayasekara LM, Perera J, Chandrasekharan V, et al. Detection of bacterial pathogens from clinical specimens using conventional microbial culture and 16S metagenomics: a comparative study. BMC Infect Dis 2017; 17: 631. DOI: 10.1186/s12879-017-2727-8.
  5. Stewart EJ. Growing unculturable bacteria. J Bacteriol 2012; 194: 4151-4160. DOI: 10.1128/JB.00345-12.
  6. Janda JM and Abbott SL. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol 2007; 45: 2761-2764. DOI: 10.1128/JCM.01228-07.
  7. Preziuso S, Moriconi M and Cuteri V. Genetic diversity of Streptococcus equi subsp. zooepidemicus isolated from horses. Comp Immunol Microbiol Infect Dis 2019; 65: 7-13. DOI: 10.1016/j.cimid.2019.03.012.
  8. Suardana IW. Erratum to "Analysis of Nucleotide Sequences of the 16S rRNA Gene of Novel Escherichia coli Strains Isolated from Feces of Human and Bali Cattle". J Nucleic Acids 2014; 2014: 412942. DOI: 10.1155/2014/412942.
  9. Suardana IW. Analysis of Nucleotide Sequences of the 16S rRNA Gene of Novel Escherichia coli Strains Isolated from Feces of Human and Bali Cattle. J Nucleic Acids 2014; 2014: 475754. DOI: 10.1155/2014/475754.
  10. Narcana IK, Suardana IW and Besung INK. Molecular characteristic of Pasteurella multocida isolates from Sumba Island at East Nusa Tenggara Province, Indonesia. Vet World 2020; 13: 104-109. DOI: 10.14202/vetworld.2020.104-109.
  11. Besung INK, Suarjana IGK, Agustina KK, et al. Isolation and identification of Streptococcus suis from sick pigs in Bali, Indonesia. BMC Res Notes 2019; 12: 795. DOI: 10.1186/s13104-019-4826-7.
  12. Nutravong T, Angkititrakul S, Jiwakanon N, et al. Identification of major Streptococcus suis serotypes 2, 7, 8 and 9 isolated from pigs and humans in upper northeastern Thailand. Southeast Asian J Trop Med Public Health 2014; 45: 1173-1181.
  13. Christ APG, Ramos SR, Cayo R, et al. Characterization of Enterococcus species isolated from marine recreational waters by MALDI-TOF MS and Rapid ID API(R) 20 Strep system. Mar Pollut Bull 2017; 118: 376-381. DOI: 10.1016/j.marpolbul.2017.03.025.
  14. Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28: 2731-2739. DOI: 10.1093/molbev/msr121.
  15. Kumar S, Stecher G, Li M, et al. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 2018; 35: 1547-1549. DOI: 10.1093/molbev/msy096.
  16. Ibekwe AM and Lyon SR. Microbiological evaluation of fecal bacterial composition from surface water through aquifer sand material. J Water Health 2008; 6: 411-421. DOI: 10.2166/wh.2008.058.
  17. Clarridge JE, 3rd. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 2004; 17: 840-862, table of contents. DOI: 10.1128/CMR.17.4.840-862.2004.
  18. Lal D, Verma M and Lal R. Exploring internal features of 16S rRNA gene for identification of clinically relevant species of the genus Streptococcus. Ann Clin Microbiol Antimicrob 2011; 10: 28. DOI: 10.1186/1476-0711-10-28.
  19. Bosshard PP, Abels S, Zbinden R, et al. Ribosomal DNA sequencing for identification of aerobic gram-positive rods in the clinical laboratory (an 18-month evaluation). J Clin Microbiol 2003; 41: 4134-4140. DOI: 10.1128/JCM.41.9.4134-4140.2003.
  20. Bertelloni F, Salvadori C, Moni A, et al. Antimicrobial resistance in Enterococcus spp. isolated from laying hens of backyard poultry floks. Ann Agric Environ Med 2015; 22: 665-669. DOI: 10.5604/12321966.1185771.
  21. Castillo-Rojas G, Mazari-Hiriart M, Ponce de Leon S, et al. Comparison of Enterococcus faecium and Enterococcus faecalis Strains isolated from water and clinical samples: antimicrobial susceptibility and genetic relationships. PLoS One 2013; 8: e59491. DOI: 10.1371/journal.pone.0059491.
  22. Getachew YM, Hassan L, Zakaria Z, et al. Characterization of vancomycin-resistant Enterococcus isolates from broilers in Selangor, Malaysia. Trop Biomed 2009; 26: 280-288.
  23. Liu Y, Wang Y, Dai L, et al. First report of multiresistance gene cfr in Enterococcus species casseliflavus and gallinarum of swine origin. Vet Microbiol 2014; 170: 352-357. DOI: 10.1016/j.vetmic.2014.02.037.
  24. Michaux C, Hansen EE, Jenniches L, et al. Single-Nucleotide RNA Maps for the Two Major Nosocomial Pathogens Enterococcus faecalis and Enterococcus faecium. Front Cell Infect Microbiol 2020; 10: 600325. DOI: 10.3389/fcimb.2020.600325.
  25. Baele M, Chiers K, Devriese LA, et al. The gram-positive tonsillar and nasal flora of piglets before and after weaning. J Appl Microbiol 2001; 91: 997-1003. DOI: 10.1046/j.1365-2672.2001.01463.x.
  26. Huang XQ, Qiu JK, Wang CH, et al. Sepsis secondary to multifocal Enterococcus faecium infection: A case report. Medicine (Baltimore) 2020; 99: e19811. DOI: 10.1097/MD.0000000000019811.

How to Cite

Suharsono, H., Suardana, I. W., & Putri, R. K. (2022). Identification of PST 10 bacterial isolate with ?-hemolysis characteristic isolated from pig’s tonsil. Bali Medical Journal, 11(1), 56–60. https://doi.org/10.15562/bmj.v11i1.3180

HTML
2

Total
22

Share

Search Panel

Hamong Suharsono
Google Scholar
Pubmed
BMJ Journal


I Wayan Suardana
Google Scholar
Pubmed
BMJ Journal


Rizki Kusuma Putri
Google Scholar
Pubmed
BMJ Journal