Skip to main content Skip to main navigation menu Skip to site footer

Advanced MRI prediction of meningioma histopathological classification: a literature review and case presentations

Abstract

Meningioma is not uncommon case; however, the differentiation of high-grade from low-grade meningioma is important. The rate of recurrence of grade I meningioma is 7-20%, but in grade II meningioma is 30-40% and in grade III 50-80%. Non-invasive MRI techniques that can differentiate high-grade from low-grade meningiomas before surgery are useful for surgical planning and subsequent treatment. We present a review article and some case studies of low-grade (WHO grade I) and high-grade (WHO grade II and grade III) meningioma with conventional MRI and continue with advanced MRI; we performed diffusion weighted imaging (DWI) with apparent diffusion coefficient (ADC) value, dynamic susceptibility contrast (DSC), dynamic contrast-enhanced (DCE) magnetic resonance (MR) perfusion and 3D ASL. From these three cases show that advanced magnetic resonance imaging with ADC value, DSC, DCE, and 3D arterial spin-labelling (ASL) is an essential sequence to differentiate high-grade from low-grade meningioma.

References

  1. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803–20.
  2. Pavlisa G, Rados M, Pazanin L, Padovan RS, Ozretic D, Pavlisa G. Characteristics of typical and atypical meningiomas on ADC maps concerning schwannomas. Clin Imaging. 2008;32(1):22–7.
  3. Chidambaram S, Pannullo SC, Roytman M, Pisapia DJ, Liechty B, Magge RS, et al. Dynamic contrast-enhanced magnetic resonance imaging perfusion characteristics in meningiomas treated with resection and adjuvant radiosurgery. Neurosurg Focus. 2019;46(6): E10.
  4. Id ST, Liu X, He L, Liu B, Qin B, Feng C. Application of a 3D pseudo-continuous arterial spin-labeled perfusion MRI scan combined with a post-labeling delay value in the diagnosis of neonatal hypoxic-ischemic encephalopathy. 2019;1–14.
  5. Huang RY, Bi WL, Griffith B, Kaufmann TJ, La Fougère C, Schmidt NO, et al. Imaging and diagnostic advances for intracranial meningiomas. Neuro Oncol. 2019;21:I44–61.
  6. Tourdias T, Rodrigo S, Oppenheim C, Naggara O, Varlet P, Amoussa S, et al. Pulsed arterial spin labeling applications in brain tumors: Practical review. J Neuroradiol. 2008;35(2):79–89.
  7. Dangouloff-Ros V, Deroulers C, Foissac F, Badoual M, Shotar E, Grévent D, et al. Arterial spin labeling to predict brain tumor grading in children: Correlations between histopathologic vascular density and perfusion MR imaging. Radiology. 2016;281(2):553–66.
  8. Qiao XJ, Kim HG, Wang DJJ, Salamon N, Linetsky M, Sepahdari A, et al. Application of arterial spin labeling perfusion MRI to differentiate benign from malignant intracranial meningiomas. Eur J Radiol. 2017 Dec 1;97:31–6.
  9. Kimura H, Takeuchi H, Koshimoto Y, Arishima H, Uematsu H, Kawamura Y, et al. Perfusion Imaging of Meningioma by Using Continuous Arterial Spin-Labeling: Comparison with Dynamic Susceptibility-weighted Contrast-Enhanced MR Images and Histopathologic Features [Internet]. [cited 2020 Oct 6]. Available from: www.ajnr.org
  10. Qiao XJ, Kim HG, Wang DJJ, Salamon N, Linetsky M, Sepahdari A, et al. Application of arterial spin labeling perfusion MRI to differentiate benign from malignant intracranial meningiomas. Eur J Radiol. 2017;97(March):31–6.
  11. Shiroishi MS, Habibi M, Rajderkar D, Yurko C, Go JL, Lerner A, et al. Perfusion and permeability MR imaging of gliomas. Technol Cancer Res Treat. 2011;10(1):59–71.
  12. Keil VC, Pintea B, Gielen GH, Hittatiya K, Datsi A, Simon M, et al. Meningioma assessment: Kinetic parameters in dynamic contrast-enhanced MRI appear independent from microvascular anatomy and VEGF expression. J Neuroradiol. 2018;45(4):242–8.
  13. van Rijswijk CSP, Hogendoorn PCW, Taminiau AHM, Bloem JL. Synovial sarcoma: dynamic contrast-enhanced MR imaging features. Skeletal Radiol [Internet]. 2001;30(1):25–30. Available from: https://doi.org/10.1007/s002560000295
  14. Todua F, Chedia S. Differentiation between benign and malignant meningiomas using diffusion and perfusion MR imaging. Georgian Med News. 2012;(206):16–22.
  15. Joseph DRA. Accuracy of Perfusion MRI in Differentiating Benign From Atypical and Malignant Meningiomas. J Med Sci Clin Res. 2017;05(04):20454–60.

How to Cite

Utomo, S. A., Bajamal, A. H., Yueniwati PW, Y., Haq, I. B. I., Fauziah, D., & Fajarini, E. S. (2022). Advanced MRI prediction of meningioma histopathological classification: a literature review and case presentations. Bali Medical Journal, 11(1), 23–27. https://doi.org/10.15562/bmj.v11i1.3100

HTML
2

Total
14

Share

Search Panel

Sri Andreani Utomo
Google Scholar
Pubmed
BMJ Journal


Abdul Hafid Bajamal
Google Scholar
Pubmed
BMJ Journal


Yuyun Yueniwati PW
Google Scholar
Pubmed
BMJ Journal


Irwan Barlian Immadoel Haq
Google Scholar
Pubmed
BMJ Journal


Dyah Fauziah
Google Scholar
Pubmed
BMJ Journal


Eunike Serfina Fajarini
Google Scholar
Pubmed
BMJ Journal