Skip to main content Skip to main navigation menu Skip to site footer

The potential role of exosome on cytokine storm and treatment of severe COVID-19 infection

Abstract

The symptoms of COVID-19 varies from mild to severe. The risk of severe infection occurs about 10% of cases, while the risk of death occurs about 0-14.6% of cases. One of the suspected pathophysiology in cases of severe infection and death of COVID-19 is due to cytokine storms. Exosome plays a vital role in the pathogenesis of several diseases, including severe disease such as sepsis due to cytokine storm. Exosome has been proven as a nanomaterial carrier that can tackle cytokine storm in the treatment of severe COVID-19 infection. Several studies have been conducted for this purpose, and its clinical application continually increases. This review will explore the role of exosomes in cytokine storms that occur in patients with COVID-19 and seek the opportunity to use exosomes in their management

References

  1. WHO. Coronavirus disease COVID-2019. doi:10.30895/2312-7821-2020-8-1-3-8
  2. Ge H, Wang X, Yuan X, et al. The epidemiology and clinical information about COVID-19. Eur J Clin Microbiol Infect Dis. 2020;39(6):1011-1019. doi:10.1007/s10096-020-03874-z
  3. Worldometer. COVID-19 Coronavirus Pandemic: Coronavirus Cases. https://www.worldometers.info. Published 2020.
  4. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’’ in COVID-19.’ J Infect. 2020;80(6):607-613. doi:10.1016/j.jinf.2020.03.037
  5. Mathivanan S, Fahner CJ, Reid GE, Simpson RJ. ExoCarta 2012: Database of exosomal proteins, RNA and lipids. Nucleic Acids Res. 2012;40(D1):1241-1244. doi:10.1093/nar/gkr828
  6. Camacho L, Guerrero P, Marchetti D. MicroRNA and Protein Profiling of Brain Metastasis Competent Cell-Derived Exosomes. PLoS One. 2013;8(9). doi:10.1371/journal.pone.0073790
  7. Monteiro VVS, Reis JF, Gomes R de S, Navegantes KC, Monteiro MC. Dual behaviour of exosome in septic cardiomyopathy. In: Exosomes in Cardiovascular Diseases, Advances in Experimental Medicine and Biology. 998th ed. Singapore: Springer Nature Singapore; 2017:300. doi:10.1007/978-981-10-4397-0
  8. Essandoh K, Yang L, Wang X, et al. Blockade of exosome generation with GW4869 dampens the sepsis-induced inflammation and cardiac dysfunction. Biochim Biophys Acta - Mol Basis Dis. 2015;1852(11):2362-2371. doi:10.1016/j.bbadis.2015.08.010
  9. Mehta P, Mcauley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-1034. doi:10.1016/S0140-6736(20)30628-0
  10. Huang M, Yang Y, Shang F, et al. Clinical characteristics and predictors of disease progression in severe patients with COVID-19 infection in Jiangsu Province, China: a descriptive study. Am J Med Sci. 2020;S0002-9629(20):1-23. doi:10.1016/j.amjms.2020.05.038
  11. Zhao Q, Meng M, Kumar R, et al. Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A systemic review and meta-analysis. Int J Infect Dis. 2020;96:131-135. doi:10.1016/j.ijid.2020.04.086
  12. Zhu Y, Ziqiang D, Zhu Y, Li W, Miao H, Li Z. Evaluation of organ function in patients with severe COVID-19 infections. Med Clin (Barc). 2020. doi:10.1016/j.medcli.2020.05.012
  13. Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clin Chim Acta. 2020;506:145-148. doi:10.1016/j.cca.2020.03.022
  14. Bost P, Giladi A, Liu Y, et al. Host-Viral Infection Maps Reveal Signatures of Severe COVID-19 Patients. Cell. 2020. doi:10.1016/j.cell.2020.05.006
  15. Wang L, Liu J, Xie W, et al. Overexpression of MALAT1 Relates to Lung Injury through Sponging miR-425 and Promoting Cell Apoptosis during ARDS. Can Respir J. 2019:1-9. doi:10.1155/2019/1871394
  16. Zdravkovic N, Rosic M, Lutovac M, Zdravkovic V. Physiology and Pathology of Cytokine: Commercial Production and Medical Use. In: Rezi N, ed. Physiology and Pathology of Immunology. London: Intech Open Limited; 2017:33-53. doi:http://dx.doi.org/10.5772/57353
  17. Ye Q, Wang B, Mao J. Cytokine Storm in COVID-19 and Treatment. J Infect. 2020. doi:10.1016/j.jinf.2020.03.037
  18. Sun X, Wang T, Cai D, et al. Cytokine storm intervention in the early stages of COVID-19 pneumonia. Cytokine Growth Factor Rev. 2020;(April):1-5. doi:10.1016/j.cytogfr.2020.04.002
  19. Liu B. Free DNA, a reason for severe COVID-19 infection? Med Hypotheses. 2020;142(April):109812. doi:10.1016/j.mehy.2020.109812
  20. Hirano T, Murakami M. COVID-19: A New Virus, but a Familiar Receptor and Cytokine Release Syndrome. Immunity. 2020;52(5):731-733. doi:10.1016/j.immuni.2020.04.003
  21. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi:10.1016/S0140-6736(20)30183-5
  22. Raucci F, Mansour AA, Casillo GM, et al. Interleukin-17A (IL-17A), a key molecule of innate and adaptive immunity, and its potential involvement in COVID-19-related thrombotic and vascular mechanisms. Autoimmun Rev. 2020;19(April):102572. doi:10.1016/j.autrev.2020.102572
  23. Real JM, Ferreira LRP, Esteves GH, et al. Exosomes from patients with septic shock convey miRNAs related to inflammation and cell cycle regulation: New signaling pathways in sepsis? Crit Care. 2018;22(1):1-11. doi:10.1186/s13054-018-2003-3
  24. Gao K, Jin J, Huang C, et al. Exosomes Derived From Septic Mouse Serum Modulate Immune Responses via Exosome-Associated Cytokines. Front Immunol. 2019;10(July):1-11. doi:10.3389/fimmu.2019.01560
  25. Cesar L, Azevedo P, Janiszewski M, et al. Platelet-derived exosomes from septic shock patients induce myocardial dysfunction. Crit Care. 2007;11(6):1-10. doi:10.1186/cc6176
  26. COVID-19 Treament Guideline Panel. Coronavirus Disease 2019 ( COVID-19 ) Treatment Guidelines. https://www.COVID19treatmentguidelines.nih.gov/. Published 2020. Accessed July 2, 2020.
  27. CDC. Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease. doi:10.1056/NEJMc2009787
  28. Grein J, Ohmagari N, Shin D, et al. Compassionate Use of Remdesivir for Patients with Severe COVID-19. N Engl J Med. 2020;382:2327-2336. doi:10.1056/nejmoa2007016
  29. Theoharides TC, P Conti. Dexamethasone for COVID-19 ? Not so fast. J Biol Regul Homeost Agent. 2020;34(3):1-5. doi:10.23812/20-EDITORIAL
  30. Ren J, He W, Zheng L, Duan H. From structures to functions: Insights into exosomes as promising drug delivery vehicles. Biomater Sci. 2016;4(6):910-921. doi:10.1039/c5bm00583c
  31. Momen-Heravi F, Bala S, Bukong T, Szabo G. Exosome-mediated delivery of functionally active miRNA-155 inhibitor to macrophages. Nanomedicine Nanotechnology, Biol Med. 2014;10(7):1517-1527. doi:10.1016/j.nano.2014.03.014
  32. Miksa M, Wu R, Dong W, et al. Immature Dendritic Cell-Derived Exosomes Rescue Septic Animals Via Milk Fat Globule Epidermal Growth Factor VIII. J Immunol. 2009;183(9):5983-5990. doi:10.4049/jimmunol.0802994
  33. Choi H, Kim Y, Mirzaaghasi A, et al. Exosome-based delivery of super-repressor I k B a relieves sepsis-associated organ damage and mortality. Sci Adv. 2020;6(eaaz6980):1-10.
  34. Song Y, Dou H, Li X, et al. Exosomal miRâ€146a Contributes to the Enhanced Therapeutic Efficacy of Interleukinâ€1βâ€Primed Mesenchy.pdf. Stem Cells Express. 2017;35:1208-1221. doi:http://dx.doi.org/ 10.1002/stem.2564
  35. Tsuchiya A, Takeuchi S, Iwasawa T, et al. Therapeutic potential of mesenchymal stem cells and their exosomes in severe novel coronavirus disease 2019 ( COVID-19 ) cases. Inflamation Regen. 2020;40(14):10-15. doi:10.1186/s41232-020-00121-y
  36. Wu J, Wang Y, Li L. Functional significance of exosomes applied in sepsis: A novel approach to therapy. Biochim Biophys Acta - Mol Basis Dis. 2017;1863(1):292-297. doi:10.1016/j.bbadis.2016.10.024

How to Cite

Kadriyan, H., Prasedya, E. S., Pieter, N. A. L., Gaffar, M., Punagi, A. Q., & Bukhari, A. (2020). The potential role of exosome on cytokine storm and treatment of severe COVID-19 infection. Bali Medical Journal, 9(3), 630–636. https://doi.org/10.15562/bmj.v9i3.1966

HTML
20

Total
41

Share

Search Panel

Hamsu Kadriyan
Google Scholar
Pubmed
BMJ Journal


Eka Sunarwidhi Prasedya
Google Scholar
Pubmed
BMJ Journal


Nova Audrey L Pieter
Google Scholar
Pubmed
BMJ Journal


Masyita Gaffar
Google Scholar
Pubmed
BMJ Journal


Abdul Qadar Punagi
Google Scholar
Pubmed
BMJ Journal


Agussalim Bukhari
Google Scholar
Pubmed
BMJ Journal