Skip to main content Skip to main navigation menu Skip to site footer

Acute toxicity profile and Sun Protection Factor (SPF) nanoemulgel combination of C-phenylcalix[4]resorcinaryl octacinnamate, C-methylcalix[4]resorcinaryl octabenzoate, and quercetin in vitro and in vivo

Abstract

Background: The ageing process (photoaging) can be caused by sun exposure, especially ultraviolet light. Organic and inorganic sunscreen products are commercially available. Two calixarene organic compounds, namely C-phenylcalix[4]resorcinaryl octacinnamate and C-methylcalix[4]resorcinaryl octabenzoate, have been successfully synthesized. Besides, the antioxidant quercetin can be potentially combined with these two compounds since ultraviolet rays also cause reactive oxygen species. This study aimed to evaluate the acute toxicity profile in vitro by cell line Vero and to develop the optimal activity of the product in New Zealand rabbit skin.

Methods: Optimal formulation of three formulas nanoemulgel of sunscreen was using  D Optimal Mixture Design. Acute cytotoxicity test in vitro by culture cell line Vero was using randomized post-test only control group design. The activity of the product was measured by the value of Sun Protection Factor (SPF) in vivo using randomized post-test only control group design. Data of acute toxicity in vitro test (IC50 value) was analyzed using probit analysis and activity sun protection factor was analyzed using one-way ANOVA on SPSS version 20 for Windows. 

Results: The in-vitro toxicity test of formula 1, 2, 3 nanoemulgel were 2,940.569 µg/mL, 13,489.728 µg/mL, and 6,289.248 µg/mL respectively. The formula 1 nanoemulgel sunscreen products were produced with the three highest SPF values. SPF in vivo test showed that the nanoemulgel protection capability of the formula 1 with three different doses were 34; 36; dan 43 respectively. 

Conclusion: It can be concluded that the nanoemulgel sunscreen products were successfully formulated with high in vivo SPF value and can be potentially developed as organic sunscreens in the future because it is not toxic in culture cell.

References

  1. Kale ST, Ghoge P, Ansari A, Waje A, Sonawane A. Formulation and in vitro determination of sun protection factor of Nigella sativa Linn. seed oil suncreen cream. Int J Pharm Tech Res. 2010;4(2):2194-2197
  2. Choi DK, Jung TK, Lim TY, Kim TH, Kim YB, Lee JH, et al. Photoprotective effects of methoxycinnamidopropyl polysilsesquioxane. Photochem Photobiol. 2011;87(4):920–924.
  3. Mishra AK, Mishra A, Chattopadhyay P. Evaluation of Sun Protection Factor of Some Marketed Formulations of Suncreens by Ultraviolet Spectroscopic Method. J Curr Pharm Res. 2011;5(1):32-35
  4. Saewan H, Jimtaisong A. Photoprotection of Natural Flavonoids. J Appl Pharm Sci. 2013;3(9):129-141
  5. Brenner M, Hearing VJ. The protective role of melanin against UV damage in human skin. Photochem Photobiol. 2008;84(3):539–549.
  6. Kullavanijaya P, Lim HW. Photoprotection. J Am Acad Dermatol. 2005;52(6):937–962.
  7. Duale N, Olsen AK, Christensen T, Butt ST, Brunborg G. Octyl methoxycinnamate modulates gene expression and prevents cyclobutane pyrimidine dimer formation but not oxidative DNA damage in UV-exposed human cell lines. Toxicol Sci. 2010;114(2):272–284.
  8. Chawla HM, Pant N, Kumar S, Mrig S, Srivastava B, Kumar N, et al. Synthesis and evaluation of novel tetrapropoxycalix[4]arene enones and cinnamates for protection from ultraviolet radiation. J Photochem Photobiol B. 2011;105(1):25–33.
  9. Wolf P, Hoffmann C, Quehenberger F, Grinschgl S, Kerl H. Immune protection factors of chemical sunscreens measured in the local contact hypersensitivity model in humans. J Invest Dermatol. 2003;121(5):1080–1087.
  10. Kaur CD, Saraf S. In vitro sun protection factor determination of herbal oils used in cosmetics. Pharmacognosy Res. 2010;2(1):22–25.
  11. Young AR, Boles J, Herzog B, Osterwalder U, Baschong W. A sunscreen's labeled sun protection factor may overestimate protection at temperate latitudes: a human in vivo study. J Invest Dermatol. 2010;130(10):2457–2462.
  12. Gonzalez H, Tarras-Wahlberg N, Strömdahl B, Juzeniene A, Larko O, Rosen A, et al. Photostability of commercial sunscreens upon sun exposure and irradiation by ultraviolet lamps. BMC Dermatol. 2007;7:1.
  13. Duale N, Olsen AK, Christensen T, Butt ST, Brunborg G. Octyl methoxycinnamate modulates gene expression and prevents cyclobutane pyrimidine dimer formation but not oxidative DNA damage in UV-exposed human cell lines. Toxicol Sci. 2010;114(2):272–284.
  14. Budiana IGMN, Jumina, Anwar C, Mustofa, Sahadewa. Synthesis of Benzoyl C-Phenylcalix [4] Resorcinaryl Octaacetate and Cinnamoyl C-Phenylcalix [4] arene for UV Absorbers. Indo J Chem. 2014;(2):160-167
  15. Johari J, Kianmehr A, Mustafa MR, Abubakar S, Zandi K. Antiviral activity of baicalein and quercetin against the Japanese encephalitis virus. Int J Mol Sci. 2012;13(12):16785–16795.
  16. Wu TH, Yen FL, Lin LT, Tsai TR, Lin CC, Cham TM. Preparation, physicochemical characterization, and antioxidant effects of quercetin nanoparticles. Int J Pharm. 2008;346(1-2):160–168.
  17. Dajas F. Life or death: neuroprotective and anticancer effects of quercetin. J Ethnopharmacol. 2012;143(2):383–396.
  18. Caamal-Fuentes EE, Peraza-Sánchez SR, Torres-Tapia LW, Moo-Puc RE. Isolation and Identification of Cytotoxic Compounds from Aeschynomene fascicularis, a Mayan Medicinal Plant. Molecules. 2015;20(8):13563–13574.
  19. Zhang N, Shen X, Jiang X, Cai J, Shen X, Hu Y, et al. Two new cytotoxic stilbenoid dimers isolated from Cajanus cajan. J Nat Med. 2018;72(1):304–309.
  20. Manaia EB, Kaminski RCK, Correa MA, Chiavacci LA. Inorganic UV Filters. Braz J Pharm Sc. 2013;49(2):201-209.
  21. Shin S, Wang L, Zheng X, Xiang L, Liang Y. Protective Effect of (-)- Epigallotechin Gallate against Photo Damage Induced by Ultraviolet A in Human Skin Fibroblast. Trop J Pharm Res. 2014;13(7):1079-1084.
  22. Jawi IM, Indrayani AW, Sutirtayasa IWP. Aqueous Extract of Balinese Purple Sweet Potato (Ipomoea batatas, L) Prevents Oxidative Stress and Decrease Blood Interleuikin -1 in Hypercholesterolamic Rabbits. Bali Med J. 2015;4(1):37-40.
  23. Budiana IGMN, Jumina, Anwar C, Sunardi, Mustofa. Synthesis and In Vitro Evaluation of C-methylcalix [4] resorcinaryl Octacinnamate and C-methylcalix [4] resorcinaryl Octabenzoate as the Suncreen. Indo J Chem. 2017;17(1):63-70.

How to Cite

Indrayani, A. W., Jawi, I. M., Artini, I. G. A., Sucindra, N. W., Martodihardjo, S., Radiono, S., Jumina, J., Budiana, I. G. M. N., Arimurni, D. A., Wahyudi, M. D. P., Chabib, L., & Mustofa, M. (2020). Acute toxicity profile and Sun Protection Factor (SPF) nanoemulgel combination of C-phenylcalix[4]resorcinaryl octacinnamate, C-methylcalix[4]resorcinaryl octabenzoate, and quercetin in vitro and in vivo. Bali Medical Journal, 9(1), 246–252. https://doi.org/10.15562/bmj.v9i1.1658

HTML
2

Total
20

Share

Search Panel

Agung Wiwiek Indrayani
Google Scholar
Pubmed
BMJ Journal


I Made Jawi
Google Scholar
Pubmed
BMJ Journal


I Gusti Ayu Artini
Google Scholar
Pubmed
BMJ Journal


Ni Wayan Sucindra
Google Scholar
Pubmed
BMJ Journal


Suwaldi Martodihardjo
Google Scholar
Pubmed
BMJ Journal


Sunardi Radiono
Google Scholar
Pubmed
BMJ Journal


Jumina Jumina
Google Scholar
Pubmed
BMJ Journal


I Gusti Made Ngurah Budiana
Google Scholar
Pubmed
BMJ Journal


Dewa Ayu Arimurni
Google Scholar
Pubmed
BMJ Journal


Made Dwi Pradipta Wahyudi
Google Scholar
Pubmed
BMJ Journal


Lutfi Chabib
Google Scholar
Pubmed
BMJ Journal


Mustofa Mustofa
Google Scholar
Pubmed
BMJ Journal