Skip to main content Skip to main navigation menu Skip to site footer

Therapeutic drug monitoring of rifampicin, isoniazid, and pyrazinamide in newly-diagnosed pulmonary tuberculosis outpatients in Denpasar area


Background: Therapeutic drug monitoring (TDM) has the potency to enhance the therapeutic outcome of rifampicin, isoniazid, and pyrazinamide, the backbone of first-line anti-tuberculosis (TB) therapy. The implementation of TDM is understudied for newly-diagnosed lung TB outpatients in the Denpasar area.

Aim: To determine the prevalence of low plasma concentration of three first-line anti-TB drugs (rifampicin, isoniazid, and pyrazinamide).

Methods: Subjects were newly-diagnosed lung TB adult outpatients from the Denpasar area, aged >18 years old, without comorbidity (HIV or diabetes), not pregnant and not using comedications for at least two days before the test. The subjects received daily anti-TB drugs for at least ten days before the test. SGOT, SGPT, and albumin levels were tested at the time before administration of RHZE 4-FDC tablet. Subjects were tested for plasma concentration at 2 and 6 hours after ingestion of RHZE 4-FDC tablet. Plasma levels of rifampicin, isoniazid, and pyrazinamide were analyzed using HPTLC spectrophotodensitometry method.

Results: 28 of 32 subjects had low plasma concentrations of rifampicin, 9 of 24 subjects had low plasma concentrations of isoniazid, 4 of 24 subjects had high plasma concentrations of isoniazid, and 14 of 31 subjects had low levels of pyrazinamide; 3 subjects had plasma concentration of three drugs within the expected range simultaneously.

Conclusion: Almost all subjects had low plasma concentration of rifampicin, isoniazid, and pyrazinamide. Only a limited number of subjects had plasma concentration within the target range of the three drugs simultaneously.


  1. Babalik A, Mannix S, Francis D, Menzies D. Therapeutic drug monitoring in the treatment of active tuberculosis. Canadian respiratory journal. 2011;18(4):225–9. Available in:
  2. Heysell SK, Moore JL, Peloquin CA, Ashkin D, Houpt ER. Outcomes and use of therapeutic drug monitoring in multidrug-resistant tuberculosis patients treated in Virginia, 2009-2014. Tuberc Respir Dis (Seoul). 2015;78(2):78–84.
  3. Sotgiu G, Alffenaar J-WC, Centis R, D’Ambrosio L, Spanevello A, Piana A, et al. Therapeutic drug monitoring: how to improve drug dosage and patient safety in tuberculosis treatment. Int J Infect Dis [Internet]. March 2015 [cited on January 17, 2016];32:101–4. Available in:
  4. Wilby KJ, Ensom MHH, Marra F. Review of Evidence for Measuring Drug Concentrations of First-Line Antitubercular Agents in Adults. Clinical Pharmacokinetics. 2014;53(10).
  5. Heysell SK, Moore JL, Staley D, Dodge D, Houpt ER. Early Therapeutic Drug Monitoring for Isoniazid and Rifampin among Diabetics with Newly Diagnosed Tuberculosis in Virginia, USA. Tuberc Res Treat [Internet]. 2013;2013:129723. Available in:
  6. Peloquin C. Use of Therapeutic Drug Monitoring in Tuberculosis Patients. Chest [Internet]. December 2004;126(6):1722–4. Available in:
  7. Peloquin C a. Therapeutic drug monitoring in the treatment of tuberculosis. Drugs. 2002;62(15):2169–83.
  8. Zuur MA, Bolhuis MS, Anthony R, den Hertog A, van der Laan T, Wilffert B, et al. Current status and opportunities for therapeutic drug monitoring in the treatment of tuberculosis. Expert Opin Drug Metab Toxicol [Internet]. Taylor & Francis; 2016;12(5):509–21. Available in:
  9. Egelund EF, Alsultan A, Peloquin CA. Optimizing the Clinical Pharmacology of Tuberculosis Medications. Clin Pharmacol Ther. 2015;98(4).
  10. Ghimire S, Bolhuis MS, Sturkenboom MGG, Akkerman OW, De Lange WCM, Van Der Werf TS, et al. Incorporating therapeutic drug monitoring into the World Health Organization hierarchy of tuberculosis diagnostics. Eur Respir J [Internet]. 2016;47(6):1867–9. Available in:
  11. Sekaggya-Wiltshire C, Lamorde M, Kiragga AN, Dooley KE, Kamya MR, Kambugu A, et al. The utility of pharmacokinetic studies for the evaluation of exposure-response relationships for standard dose anti-TB drugs. Tuberculosis [Internet]. 2018 Jan 1;108:77-82. Available in:
  12. Chawla PK, Udwadia ZF, Soman R, Mahashur AA, Amale RA, Dherai AJ, et al. Importance of therapeutic drug monitoring of rifampicin. J Assoc Physicians India [Internet]. 2016;64(AUGUST):68–72. Available in:
  13. Choi R, Jeong B, Koh W, Lee S. Recommendations for Optimizing Tuberculosis Treatment : Therapeutic Drug Monitoring, Pharmacogenetics, and Nutritional Status Considerations. Ann Lab Med. 2017;37(2):97–107.
  14. Lauzardo M, Peloquin CA. Anti-TB therapy for 2012 and beyond. Expert Opin Pharmacother [Internet]. 2012;13(4):511–26. Available in:
  15. Alsultan A, Peloquin CA. Erratum: Therapeutic drug monitoring in the treatment of tuberculosis: An update. Drugs. 2014;74(8):839-54. DOI: 10.1007/s40265-014-0222-8. Available in:
  16. Ruslami R, Nijland HMJ, Alisjahbana B, Parwati I, Van Crevel R, Aarnoutse RE. Pharmacokinetics and tolerability of a higher rifampin dose versus the standard dose in pulmonary tuberculosis patients. Antimicrob Agents Chemother. 2007;51(7):2546–51.
  17. Ruslami R, Nijland HMJ, Adhiarta IGN, Kariadi SHKS, Alisjahbana B, Aarnoutse RE, et al. Pharmacokinetics of anti-TB drugs in pulmonary tuberculosis patients with type 2 diabetes. Antimicrob Agents Chemother. 2010;54(3):1068–74. Available in:
  18. Burhan E, Ruesen C, Ruslami R, Ginanjar A, Mangunnegoro H, Ascobat P, et al. Isoniazid, rifampin, and pyrazinamide serum concentrations in relation to treatment response in Indonesian pulmonary tuberculosis patients. Antimicrob Agents Chemother. 2013;57(8):3614–9.
  19. Te Brake LHM, Ruslami R, Later-Nijland H, Mooren F, Teulen M, Apriani L, et al. Exposure to total and protein-unbound rifampin is not affected by malnutrition in Indonesian tuberculosis patients. Antimicrob Agents Chemother [Internet]. 2015;59(6):3233–9. Available in:
  20. Gurumurthy P, Sarnia GR, Jayasankar K, Thyagarajan K, Prabhakar R, Sampathkumar P, et al. Single-Dose Pharmacokinetics of Isoniazid and Rifampicin in. Indian J Tuberc. 1991;7992(39):221–8.
  21. Dinas Kesehatan Provinsi Bali. (2015). Profil Kesehatan Provinsi Bali Tahun 2015 [online]. Available in: Kesehatan Provinsi Bali/Tahun 2015/Bali_Profil_2015.pdf
  22. Olaru ID, Lange C, Heyckendorf J. Personalized medicine for patients with MDR-TB. J Antimicrob Chemother. 2015;71(4):852-5. Available in:
  23. Heysell SK, Moore JL, Keller SJ, Houpt ER. Therapeutic drug monitoring for slow response to tuberculosis treatment in a state control program, Virginia, USA. Emerg Infect Dis. October 2010;16(10):1546–53. Available in:
  24. Babalik A, Ulus H, Bakirci N, Kuyucu T, Arpag H, Dagyildizi L. Serum concentrations of isoniazid and rifampin are decreased in adult pulmonary tuberculosis patients with diabetes mellitus. Antimicrob Agents Chemother. 2013;57(11):5740–2.
  25. Stott KE, Pertinez H, Sturkenboom MGG, Boeree MJ, Aarnoutse R, Ramachandran G, et al. Pharmacokinetics of rifampicin in adult TB patients and healthy volunteers: a systematic review and meta-analysis. J Antimicrob Chemother [Internet]. 2018;73(9):2305-2313. Available in:
  26. Sturkenboom MGG, Akkerman OW, Van Altena R, De Lange WCM, Kosterink JGW, Van Der Werf TS, et al. Dosage of isoniazid and rifampicin poorly predicts drug exposure in tuberculosis patients. Eur Respir J. 2016;48(4):1237–9.
  27. Wilkins JJ, Langdon G, Mcilleron H, Pillai G, Smith PJ, Simonsson USH. Variability in the population pharmacokinetics of isoniazid in South African tuberculosis patients. Br J Clin Pharmacol [Internet]. 2011;72(1):51–62. Available in:
  28. Zvada SP, Denti P, Donald PR, Schaaf HS, Thee S, Seddon J a., et al. Population pharmacokinetics of rifampicin, pyrazinamide and isoniazid in children with tuberculosis: In silico evaluation of currently recommended doses. J Antimicrob Chemother. 2014;69(5):1339–49.
  29. Pasipanodya JG, Srivastava S, Gumbo T. Meta-analysis of clinical studies support the pharmacokinetic variability hypothesis for acquired drug resistance and failure of anti-TB therapy. Clin Infect Dis [Internet]. 2012;55(2):169–77. Available in:
  30. McIlleron H, Wash P, Burger A, Norman J, Folb PI, Smith P. Determinants of rifampin, isoniazid, pyrazinamide, and ethambutol pharmacokinetics in a cohort of tuberculosis patients. Antimicrob Agents Chemother. 2006;50(4):1170–7.
  31. Jeremiah K, Denti P, Chigutsa E, Faurholt-Jepsen D, PrayGod G, Range N, et al. Nutritional supplementation increases rifampin exposure among tuberculosis patients coinfected with HIV. Antimicrob Agents Chemother. 2014;58(6):3468–74.
  32. Ramachandran G, Kumar AKH, Bhavani PK, Gangadevi NP, Sekar L, Vijayasekaran D, et al. Age, nutritional status and INH acetylator status affect pharmacokinetics of anti-TB drugs in children. Int J Tuberc Lung Dis 2013;17(6):800–6. Available in:
  33. Saktiawati AMI, Sturkenboom MGG, Stienstra Y, Subronto YW, Sumardi, Kosterink JGW, et al. Impact of food on the pharmacokinetics of first-line anti-TB drugs in treatment-naive TB patients: a randomized cross-over trial. J Antimicrob Chemother [Internet]. 2016;71(3):703–10. Available in:
  34. Lin HC, Yu MC, Liu HJ, Bai KJ. Impact of food intake on the pharmacokinetics of first-line anti-TB drugs in Taiwanese tuberculosis patients. J Formos Med Assoc [Internet]. 2014;113(5):291–7. Available in:
  35. Akunna GG, Saalu LC, Ogunlade B, Ojewale AO, Enye LA. Consumption of bay leaf (a food spice) may be a safe and effective treatment for male infertility resulting from partial ligation of the left renal vein in Wistar rat: Study suggests. Am J Res Commun. 2013;1(3):123–42.
  36. Tostmann A, Mtabho CM, Semvua HH, Van Den Boogaard J, Kibiki GS, Boeree MJ, et al. Pharmacokinetics of first-line tuberculosis drugs in Tanzanian patients. Antimicrob Agents Chemother. 2013;57(7):3208–13.
  37. Arbe MA, Varella MDCL, Siqueira HR De, Mello FAF De. Anti-TB drugs: Drug interactions, adverse effects, and use in special situations. Part 1: First-line drugs. J Bras Pneumol. 2010;36(June):626–40.
  38. Namdar R, Ebert SC, Peloquin CA. (2005) Drug Interactions in Infectious Diseases. Second edition. Piscitelli SC, Rodvold KA, editor. Humana Press. p. 191-214. [Online, cited on August 2, 2017]. Available in:
  39. Ruslami R, Nijland HMJ, Alisjahbana B, Parwati I, Crevel R Van, Aarnoutse RE, et al. Pharmacokinetics and tolerability of a higher rifampin dose versus the standard dose in pulmonary tuberculosis patients. Antimicrob Agents Chemother [Internet]. 2007;51(7):2546–51. Available in:
  40. Crevel R Van, Alisjahbana B, Lange WCM De, Borst F, Danusantoso H, Meer JWM Van Der, et al. Low serum concentrations of rifampicin in tuberculosis patients in Indonesia. Int J Tuberc Lung Dis. 2002;6(6):497–502.
  41. Collins D. The Economic Burden of Tuberculosis in Indonesia The Economic Burden of Tuberculosis in Indonesia. Int J Tuberc Lung Dis. 2016;21(9):1041–8.
  42. Mitchison DA. Role of individual drugs in the chemotherapy of tuberculosis. Int J Tuberc Lung Dis. 2000;4(9):796–806.
  43. Sotgiu G, Migliori GB. Better data, more tailored tuberculosis therapies. Lancet Infect Dis [Internet]. 2016;16(10):1096–1097. Available in:

How to Cite

Widhiartini, I. A. A., Wirasuta, M. A. G., Sukrama, D. M., & Rai, I. B. N. (2019). Therapeutic drug monitoring of rifampicin, isoniazid, and pyrazinamide in newly-diagnosed pulmonary tuberculosis outpatients in Denpasar area. Bali Medical Journal, 8(1), 107–113.




Search Panel

Ida Ayu Alit Widhiartini
Google Scholar
BMJ Journal

Made Agus Gelgel Wirasuta
Google Scholar
BMJ Journal

Dewa Made Sukrama
Google Scholar
BMJ Journal

Ida Bagus Ngurah Rai
Google Scholar
BMJ Journal